A Novel DPS Integrator for Fast CMOS Imagers

J. M. Margarit, J. Sabadell, L. Terés and F. Serra-Graells

System Integration Department
Institut de Microelectrònica de Barcelona
Centro Nacional de Microelectrónica - CSIC
Spain

May 2008
1 Introduction

2 Reset Issues in Spike Counting

3 Novel PDM Scheme

4 Compact CMOS Realization

5 Simulation Results

6 Conclusions
1 Introduction

2 Reset Issues in Spike Counting

3 Novel PDM Scheme

4 Compact CMOS Realization

5 Simulation Results

6 Conclusions
In-pixel ADC

- Architecture?
 - X Direct (flash)
 - X Algorithmic (success. approx.)
 - ✓ Predictive ($\Sigma\Delta$)

- Feedback = relaxed analog specs

- Pulse modulator + digital filter
 - PWM \equiv time-to-first spike
 - PDM \equiv spike counting
 - ✓ No external clocks
 - ✓ Switching power \propto signal
 - X Signal loss due to reset times
Introduction

2 Reset Issues in Spike Counting

3 Novel PDM Scheme

4 Compact CMOS Realization

5 Simulation Results

6 Conclusions
PDM for Fast Imaging

- Classic topology:
- CTIA to cancel input parasitics
- Correlated double sampling (CDS) for noise cancellation

- Ideally:

\[q_{adc} = \left\lfloor n_{adc\text{ideal}} \right\rfloor \]

\[n_{adc\text{ideal}} = \frac{T_{frame}}{T_{pulse\text{ideal}}} = \frac{T_{frame}}{C_{int} V_{th}} I_{sens} \]
Real Scenario

- Loss due to reset time:
 \[n_{\text{adc real}} = \frac{T_{\text{frame}}}{T_{\text{pulse ideal}} + T_{\text{res}}} \]
 \[n_{\text{adc real}} = \frac{n_{\text{adc ideal}}}{1 + \frac{T_{\text{res}}}{T_{\text{frame}}} n_{\text{adc ideal}}} \]

- Non-linearity error:
 \[n_{\text{error}} = |n_{\text{adc real}} - n_{\text{adc ideal}}| \]

- Maximum at full-scale:
 \[\max(n_{\text{error}}) = q_{\text{fullscale}} - \frac{q_{\text{fullscale}}}{1 + \frac{T_{\text{res}}}{T_{\text{frame}}} q_{\text{fullscale}}} < 0.5\text{LSB} = \frac{1}{2} \]
 \[T_{\text{res}} < \frac{T_{\text{frame}}}{2 q_{\text{fullscale}}^2} \text{ for } q_{\text{fullscale}} \gg 1 \]
 e.g. \(q_{\text{fullscale}} = 1023 \) (10bit) \(T_{\text{frame}} = 10\text{ms} \) \(\Rightarrow T_{\text{res}} < 5\text{ns} \)

Not compatible with low-power nor low-voltage!
1 Introduction

2 Reset Issues in Spike Counting

3 Novel PDM Scheme

4 Compact CMOS Realization

5 Simulation Results

6 Conclusions
Reset-Insensitive Topology

- **Charge controlled** reset of the PDM integrator
- **Continuous-time** integration (like APS!)
- **Built-in CDS** mechanism
- **Switch charge** injection similar to classic topology
Real Scenario

- During reset, charge from \(I_{sens} \) and \(C_{reset}/CDS \) is combined and integrated in \(C_{int} \).

- Almost ideal, even for \(T_{pulsereal} \sim T_{res} \).

- Minimum \(T_{res} \) required for redistribution...

- ...but \(T_{res} \) value not relevant (technology independence).

True low-power and low-voltage compatible!
1. Introduction

2. Reset Issues in Spike Counting

3. Novel PDM Scheme

4. Compact CMOS Realization

5. Simulation Results

6. Conclusions
CMOS Proposal

- **3-stage compact** PDM circuit

- **Single** transistor CTIA stage M1

- **Local** reference M2

- Built-in **threshold** comparator M3 (all in weak inversion):

 \[V_{th} = nU_t \ln \left(\frac{W}{L} \right)_1 \frac{(W/L)_3}{(W/L)_3} \]

- **Technology mismatching**
 \(C_{int} \leftrightarrow C_{reset/CDS}, M1 \leftrightarrow M2 \) and \(M1 \leftrightarrow M3 \)

 are equivalent to \(\Delta V_{th} \)

- **\(\Delta V_{th} \) reduction through DPS area increase**
1 Introduction

2 Reset Issues in Spike Counting

3 Novel PDM Scheme

4 Compact CMOS Realization

5 Simulation Results

6 Conclusions
Quasi-Static (QS) Stimulus

- **0.18μm 1-poly 6-metal CMOS technology**

- **Design parameters:**
 \[C_{int,reset/CDS} = 100fF, \quad V_{ref} = 1V, \]
 \[\left(\frac{W}{L}\right)_1 = 20\left(\frac{W}{L}\right)_3 \quad \text{so} \quad V_{th} = 0.1V \]
 and \[T_{frame} = 2\text{ms} \]
Non Quasi-Static (NQS) Stimulus

- **Non systematic loss**
 - even at low amplitudes for classic PDM
1 Introduction

2 Reset Issues in Spike Counting

3 Novel PDM Scheme

4 Compact CMOS Realization

5 Simulation Results

6 Conclusions
Conclusions

- Novel pulse density modulator (PDM) for high-speed DPS.
- Reset-insensitive analog integrator proposal.
- Low non-linearity for low-power and low-voltage operation.
- Compact CMOS circuit realization.
- Comparative study in 0.18µm 1-poly 6-metal technology.
- Robust simulation results for both QS and NQS signals.