# 7. Application Specific ROICs for Smart Sensors

Francesc Serra Graells

francesc.serra.graells@uab.cat

Departament de Microelectrònica i Sistemes Electrònics

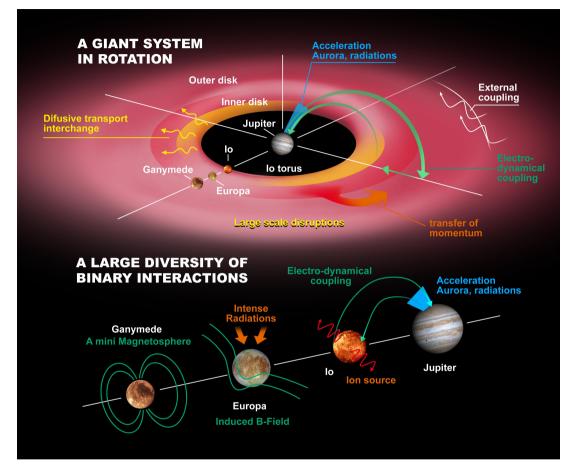
Universitat Autònoma de Barcelona

paco.serra@imb-cnm.csic.es
Integrated Circuits and Systems
IMB-CNM(CSIC)



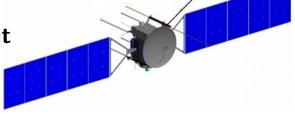


- High-Resolution SC Delta-Sigma ADC for Space Applications
- Compact Pixel Integrating ADC for X-Ray Imagers
- Low-Power Potentiostatic CT Delta-Sigma ADC for Electrochemical Integrated Sensors


- High-Resolution SC Delta-Sigma ADC for Space Applications
- Compact Pixel Integrating ADC for X-Ray Imagers
- Low-Power Potentiostatic CT Delta-Sigma ADC for Electrochemical Integrated Sensors

Application Specific ROICs for Smart Sensors Space X-Ray Electrochemical

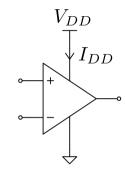
#### **ESA Cosmic Vision JUICE**




- ► Cosmic Vision is ESA 2015-2025 planning for space science missions
- Jupiter Icy Moons Explorer (JUICE)
   L-class mission launched in 2023
   (7.6y cruise & 3.5y in the Jovian system)
- Primary mission themes:
  - Emergence of habitable worlds around gas giants
  - Jupiter system as an archetype for gas giants
- Science instrument payload:
  - JANUS Optical camera system
  - MAJIS Moons and Jupiter Imaging Spectrometer
  - GALA GAnymede Laser Altimeter
  - RIME Radar for Icy Moons Exploration
  - J-MAG A magnetometer for JUICE
  - RPWI Radio & Plasma Wave Investigation
  - PRIDE Planetary Radio Interferometer & Doppler Experiment
  - **...**



→ sci.esa.int/web/juice


Next generation of read-out electronics is needed!





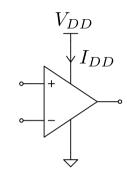
# Low-Power High-Res ADC

Low-voltage vs **low-current** design?



$$P_{DD} = V_{DD} \times I_{DD}$$






- Alternative supply sources (battery, solar cell, scavenging)
- Poor power scaling
- Limited by **technology**
- Circuit techniques: rail-to-rail, inverter-base, supply multipliers, back gate...

- **Strong** power savings
- Limited by **noise** and **bandwidth**
- Circuit techniques: subthreshold operation, Class-AB, dynamic biasing, low duty cycle...

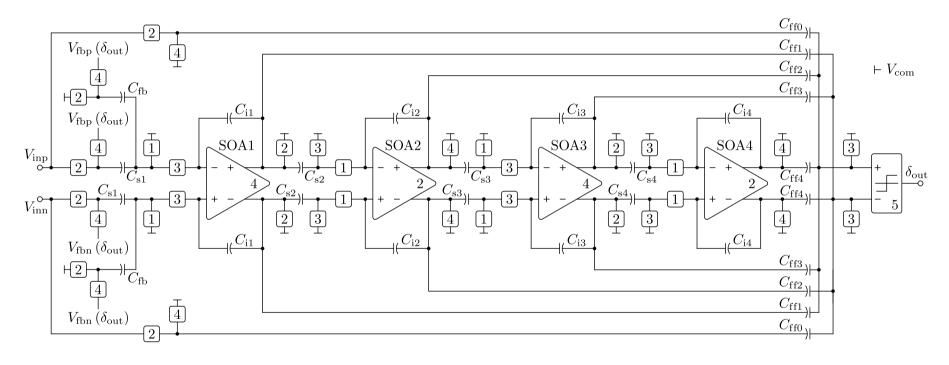
# Low-Power High-Res ADC

Low-voltage vs **low-current** design?



$$P_{DD} = V_{DD} \times I_{DD}$$

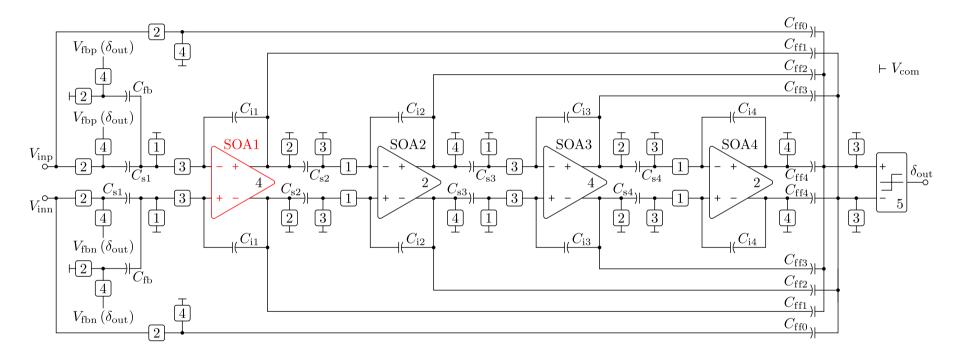





- Alternative supply sources (battery, solar cell, scavenging)
- **Poor** power scaling
- Limited by **technology**
- Circuit techniques: rail-to-rail, inverter-base, supply multipliers, back gate...

- ► State-of-art **extended-DR** SC circuits for DSM ADCs [1-6]:
  - **Clock bootstrapping** to reduce switch non-linearity [3-5]
  - High-voltage devices at input sampler to increase signal full scale [1,6]
  - Multi-bit quantization with analog calibration or digital post-processing due to mismatching [6]
- Rad-Hard 1.8V 0.18µm 1P6M CMOS technology

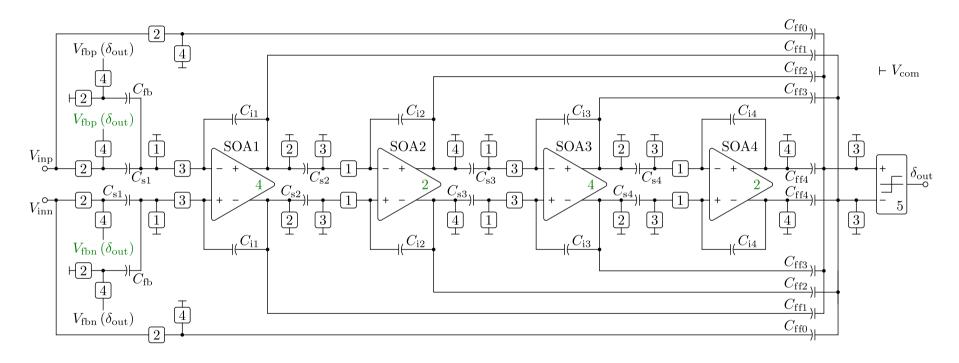
- **Strong** power savings
- Limited by noise and bandwidth
- Circuit techniques: subthreshold operation, Class-AB, dynamic biasing, low duty cycle...


**4th-order** single-loop 1-bit topology for >90dB-SNDR and **50kHz**-bandwidth:



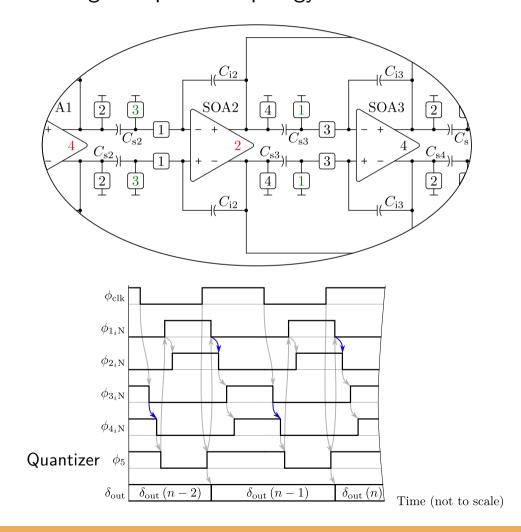
- ▲ Multiple feedforward paths to relax signal headroom at OpAmps output [7]
- ▲ **Two-level quantization** is intrinsically linear and allows passive adder [5]
- ▲ High shaping order to compensate **oversampling**: OSR = 136  $f_s = 13.6$ MS/s

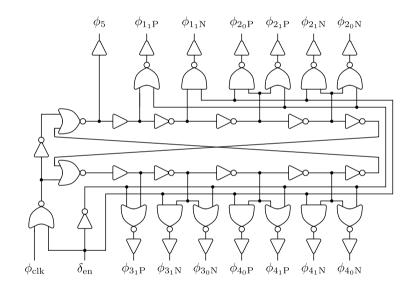
F. Serra Graells


**4th-order** single-loop 1-bit topology for **>90dB**-SNDR and **50kHz**-bandwidth:



Large capacitor sizing [pF] according to kT/C specs and optimal coefficients [8]:

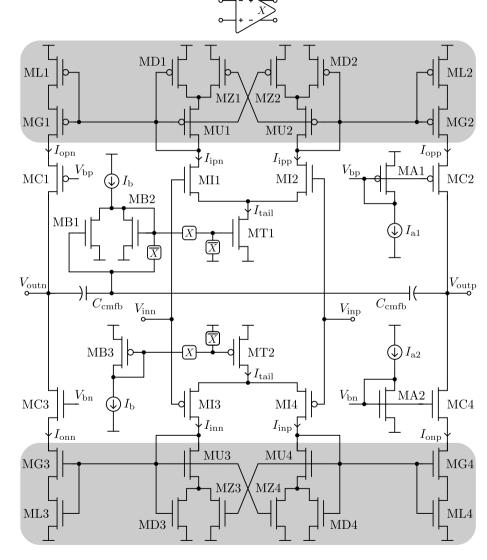

| Capacitance        | Value | Capacitance       | Value | Capacitance       | Value |
|--------------------|-------|-------------------|-------|-------------------|-------|
| $C_{ m ff0}$       | 0.92  | $C_{ m fb}$       | 21.16 |                   |       |
| $C_{ m ff1}$       | 0.92  | $C_{ m s1}$       | 42.32 | $C_{i1}$          | 211.6 |
| $C_{ m ff2}$       | 0.92  | $C_{ m s2}$       | 3.68  | $C_{ m i2}$       | 9.2   |
| $C_{\mathrm{ff}3}$ | 0.92  | $C_{\mathrm{s}3}$ | 0.92  | $C_{i3}$          | 9.2   |
| $C_{ m ff4}$       | 1.84  | $C_{\mathrm{s4}}$ | 0.92  | $C_{\mathrm{i}4}$ | 9.2   |
|                    |       |                   |       |                   |       |


**4th-order** single-loop 1-bit topology for >**90dB**-SNDR and **50kHz**-bandwidth:



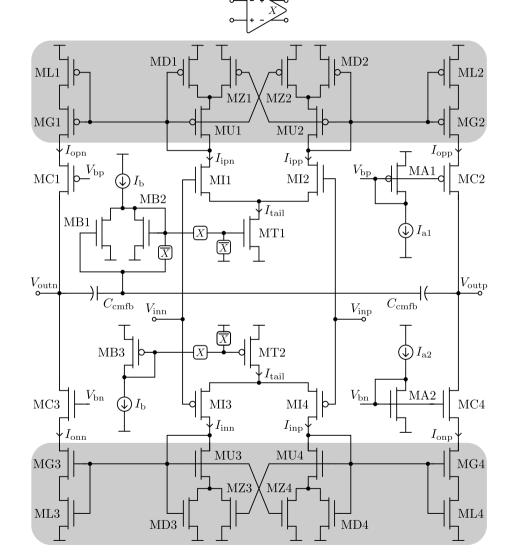
- ▲ Feedback DAC **shares** capacitor with input sampler to reduce overall area
- ▲ Switched-OpAmp (SOA) for replacing critical switches and 50% duty cycle [9]

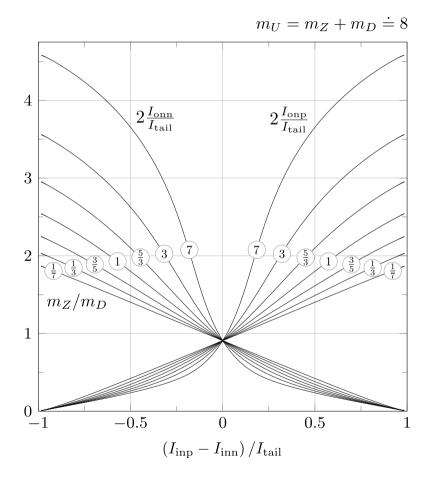
**4th-order** single-loop 1-bit topology for **>90dB**-SNDR and **50kHz**-bandwidth:





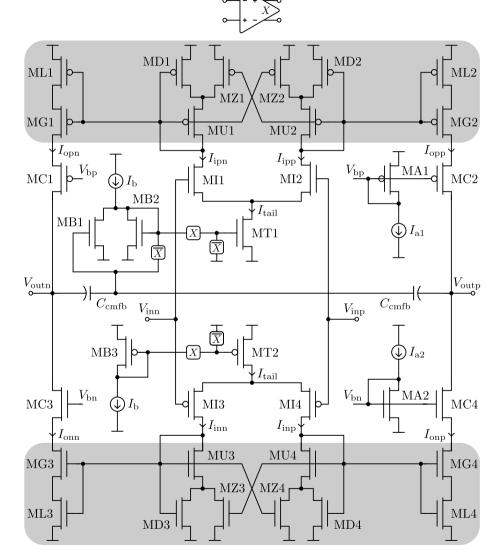

▲ (4+1)-phase switching scheme to avoid signal-dependent charge injections that would cause distortion [8]

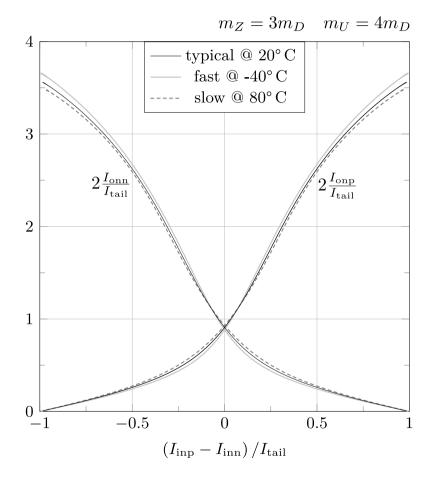

# **Switched-OpAmp Circuit**


- ► Low-power **Class-AB** single-stage design
- Complementary non-linear current mirrors with partial positive feedback
- ▲ Class-AB current in output transistors **only**
- ▲ No-need for Miller compensation capacitor
- ▲ Fast switched-OpAmp on/off-power operation



# **Switched-OpAmp Circuit**

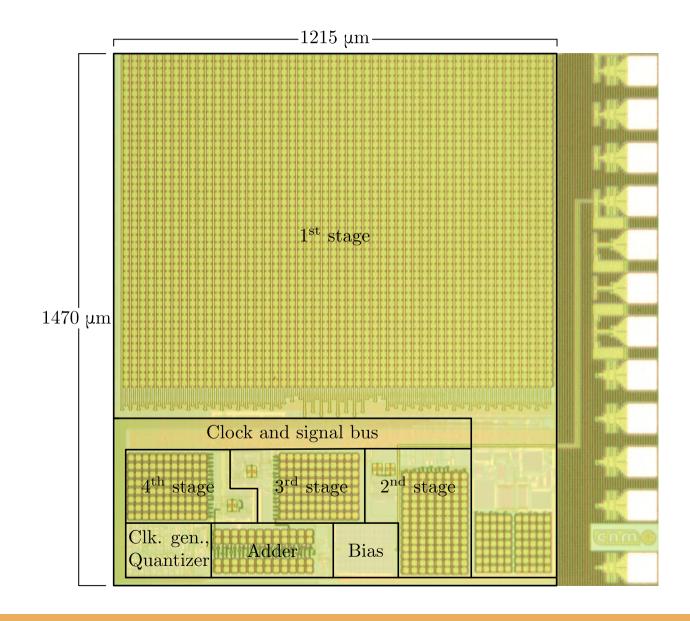

- ► Low-power **Class-AB** single-stage design
- Complementary non-linear current mirrors with partial positive feedback
- ▲ Class-AB current in output transistors **only**
- ▲ No-need for Miller compensation capacitor
- ▲ Fast switched-OpAmp on/off-power operation
- ▲ Simple analytic design based on **matching ratios**





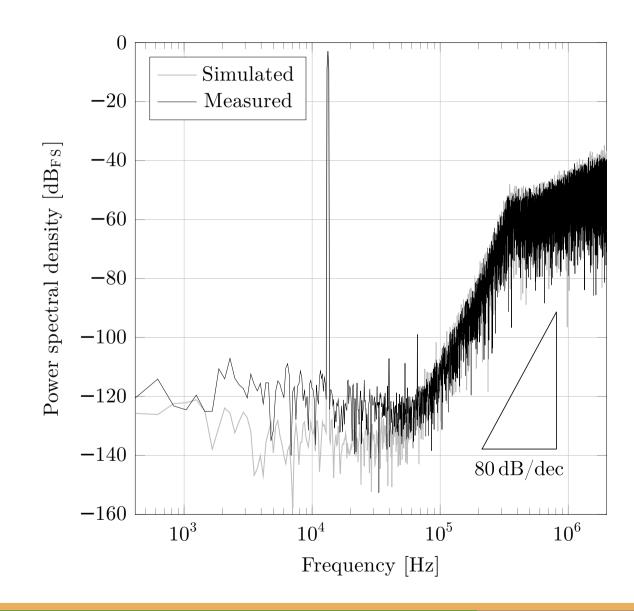

# **Switched-OpAmp Circuit**

- ► Low-power **Class-AB** single-stage design
- Complementary non-linear current mirrors with partial positive feedback
- ▲ Class-AB current in output transistors **only**
- ▲ No-need for Miller compensation capacitor
- ▲ Fast switched-OpAmp on/off-power operation
- ▲ Simple analytic design based on **matching ratios**
- ▲ Low sensitivity to CMOS technology deviations





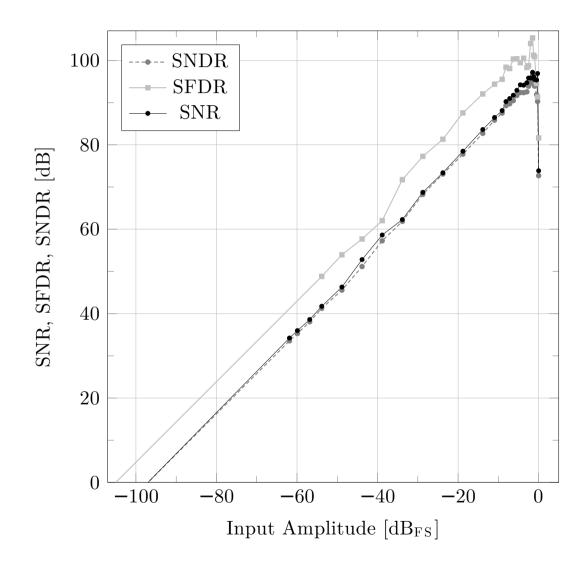

Application Specific ROICs for Smart Sensors Space X-Ray Electrochemical


# **DSM CMOS Integration**

- ► Rad-Hard 1.8V 0.18µm 1P6M CMOS technology
- Metal-insulator-metal (MIM) capacitors
- ▶ 1.8mm² overall area



# **Experimental Results**


Power spectral density at -2dB full scale



Application Specific ROICs for Smart Sensors Space X-Ray Electrochemical

# **Experimental Results**

- Power spectral density at -2dB full scale
- ▲ SNDR<sub>max</sub>=96.6dB, SFDR<sub>max</sub>=105.3dB, and DR=97dB at 13.28kHz
- $\triangle$  2.4 $V_{pp}$  input full-scale
- ▲ **7.9mW** at 1.8V
- ▲ Non-bootstrapped supply to avoide device stress
- ▲ Calibration-free operation to increase ADC robustness



## Comparison with High-Res ADCs

► Schreier **FOM** comparison:

$$FOM_S[\mathsf{dB}] \doteq SNDR[\mathsf{dB}] + 10\log(BW/P)$$

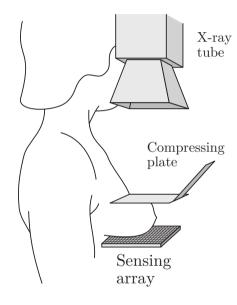
|                     | [1]            | [2]            | [3]            | [4]            | [5]            | [6]    | This<br>work   |                     |
|---------------------|----------------|----------------|----------------|----------------|----------------|--------|----------------|---------------------|
| Architecture        | $\Delta\Sigma$ | $\Delta\Sigma$ | $\Delta\Sigma$ | $\Delta\Sigma$ | $\Delta\Sigma$ | Pipe+  | $\Delta\Sigma$ |                     |
| Architecture        | SC             | CT + SC        | SC             | SC             | SC             | SAR    | SC             |                     |
| Technology          | 0.25           | 0.18           | 0.18           | 0.18           | 0.35           | 0.18   | 0.18           | $\overline{\mu}$ m  |
| Supply voltage      |                | 3.3            | 1.8            | 0.7            | 1.5            | 5, 1.8 | 1.8            | V                   |
| Diff. full scale    | 6.6            | 5.7            |                |                |                | 10     | 2.4            | $\overline{V_{pp}}$ |
| Sampling rate       | 20             | 6.14           | 45.2           | 5              | 2.4            | 5      | 13.6           | MS/s                |
| Bandwidth           | 1000           | 20             | 500            | 25             | 20             | 2500   | 50             | kHz                 |
| Supply power        | 475            | 37             | 38             | 0.87           | 0.14           | 30.5   | 7.9            | mW                  |
| Area                | 20.2           | 0.65           | 3.5            | 2.16           | 0.21           | 5.74   | 1.8            | $mm^2$              |
| DR                  | 103            | 102            | 90.1           | 100            | 92.6           | 100.2  | 97             | dB                  |
| SFDR <sub>max</sub> |                |                | 97             |                |                |        | 105.3          | dB                  |
| SNDR <sub>max</sub> |                | 95             | 86.3           | 95             | 87.9           | 98.6   | 96.6           | dB                  |
| FOM                 | (166.2)        | 152.3          | 157.5          | 169.6          | 169.5          | 177.7  | 164.6          | dB                  |
| Bootstrap-free      | Yes            | Yes            | No             | No             | No             | Yes    | Yes            |                     |
| Calibration-free    | Yes            | Yes            | Yes            | Yes            | Yes            | No     | Yes            |                     |
|                     |                |                |                |                |                |        |                |                     |

<sup>→</sup> S. Sutula, et al.

A Calibration-Free 96.6-dB-SNDR Non-Bootstrapped 1.8-V 7.9-mW Delta-Sigma Modulator with Class-AB Single-Stage Switched VMAs IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Canada, May 2016 doi.org/10.1109/ISCAS.2016.7527170

#### References

- [1] R. Brewer, J. Gorbold, P. Hurrell, C. Lyden, R. Maurino, and M. Vickery, "A 100dB SNR 2.5MS/s Output Data Rate  $\Delta\Sigma$  ADC," in Proceedings of the IEEE International Solid-State Circuits Conference, 2005, pp. 172–173.
- [2] P. Morrow, M. Chamarro, C. Lyden, P. Ventura, A. Abo, A. Matamura, M. Keane, R. O'Brien, P. Minogue, J. Mansson, N. McGuinness, M. McGranaghan, and I. Ryan, "A  $0.18\mu m$  102dB-SNR Mixed CT SC Audio-Band  $\Delta\Sigma$  ADC," in Proceedings of the IEEE International Solid-State Circuits Conference, 2005, pp. 178–592.
- [3] A. Agah, K. Vleugels, P. Griffin, M. Ronaghi, J. Plummer, and B. Wooley, "A High-Resolution Low-Power Oversampling ADC with Extended-Range for Bio-Sensor Arrays," in Symposium on VLSI Circuits Digest of Technical Papers, 2007, pp. 244–245.
- [4] H. Park, K. Nam, D. K. Su, K. Vleugels, and B. A. Wooley, "A 0.7-V 100-dB 870- $\mu$ W Digital Audio  $\Delta\Sigma$  Modulator," in Symposium on VLSI Circuits Digest of Technical Papers, 2008, pp. 178–179.
- [5] T. Christen, "A 15bit 140  $\mu$  W Scalable-Bandwidth Inverter-Based Audio  $\Delta\Sigma$  Modulator with >78dB PSRR," in Proceedings of the European Solid-State Circuits Conference, 2012, pp. 209–212.
- [6] A. Bannon, C. Hurrell, D. Hummerston, and C. Lyden, "An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range," in Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1–2.
- [7] J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, "A wideband low-distortion Delta-Sigma ADC topology," IEEE Electronics Letters, vol. 37, pp. 737–738, 2001.
- [8] L. Yao, M. Steyaert, and W. Sansen, "A 1-V, 1-MSs, 88-dB Sigma-Delta Modulator in 0.13-µm Digital CMOS Technology," in Symposium on VLSI Circuits Digest of Technical Papers, 2005, pp. 180–183.
- [9] J. Crols and M. Steyaert, "Switched-OpAmp: An Approach to Realize Full CMOS Switched-Capacitor Circuits at Very Low Power Supply Voltages," IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936–942, Aug 1994.
- [10] P. Aguirre and F. Silveira, "Bias Circuit Design for Low-Voltage Cascode Transistors," in Proceedings of the 19th Annual Symposium on Integrated Circuits and Systems Design, 2006, pp. 94–97.

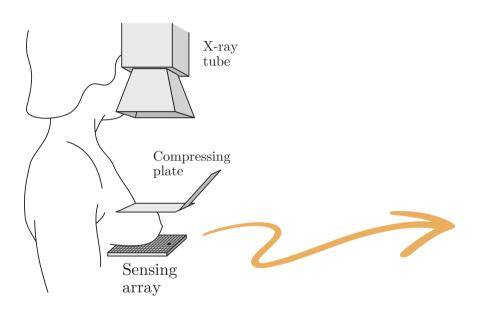



- High-Resolution SC Delta-Sigma ADC for Space Applications
- Compact Pixel Integrating ADC for X-Ray Imagers
- Low-Power Potentiostatic CT Delta-Sigma ADC for Electrochemical Integrated Sensors

Application Specific ROICs for Smart Sensors Space X-Ray Electrochemical

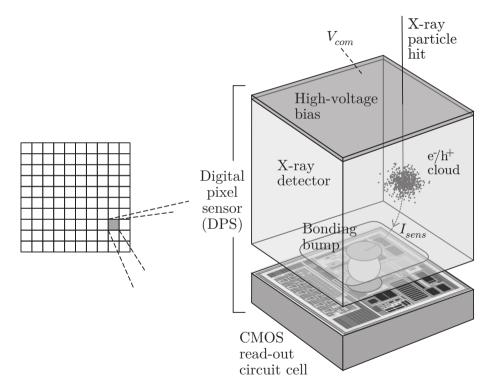
# **Direct X-Ray Digital Imagers**

► Low-energy (<20keV) medical applications: e.g. **Mammography** 




- High **dynamic range** (e.g. 10-bit) and high **spatial resolution** (e.g. 50µm-pitch) to identify microcalcifications
- **High-speed** A/D conversion for low-dose X-ray exposure
- **Low-power** circuit consumption to prevent heating X-ray detector

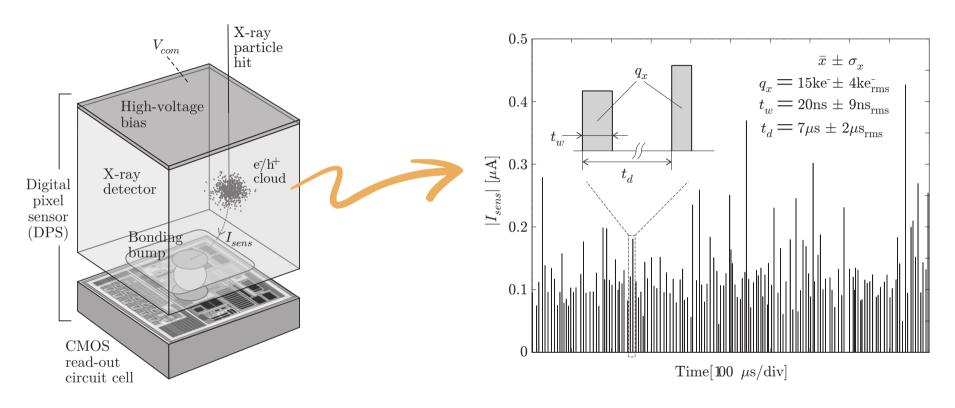



## **Direct X-Ray Digital Imagers**

► Low-energy (<20keV) medical applications: e.g. **Mammography** 



- High **dynamic range** (e.g. 10-bit) and high **spatial resolution** (e.g. 50µm-pitch) to identify microcalcifications
- **High-speed** A/D conversion for low-dose X-ray exposure
- **Low-power** circuit consumption to prevent heating X-ray detector



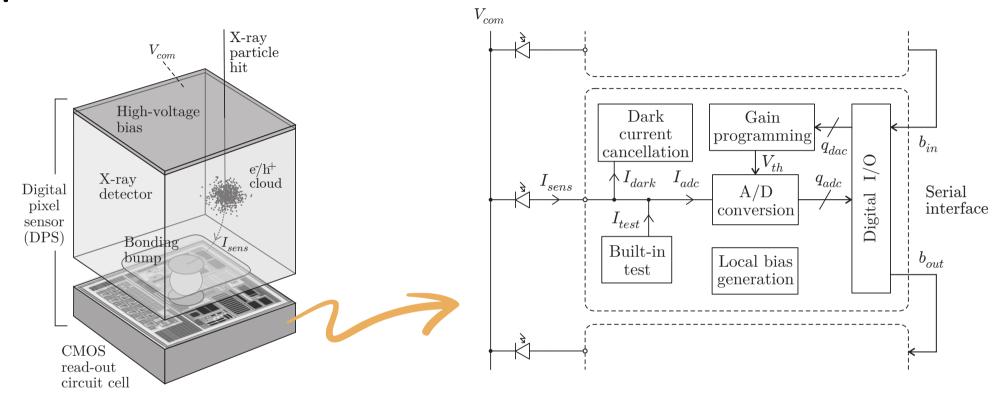



- Pixel-by-pixel bump-bonding (bump-growing + flip-chip):
- High **filling** factors
- **Expensive** packaging



## **Photon Counting vs Charge Integration**



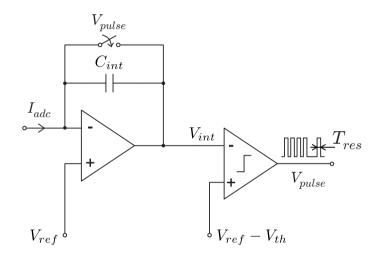

#### ► **Single particle** detection:

- Less sensitive to circuit **noise**
- Possibility of photon classification
- Transient **pile-up** effects
- **Charge-sharing** between pixels

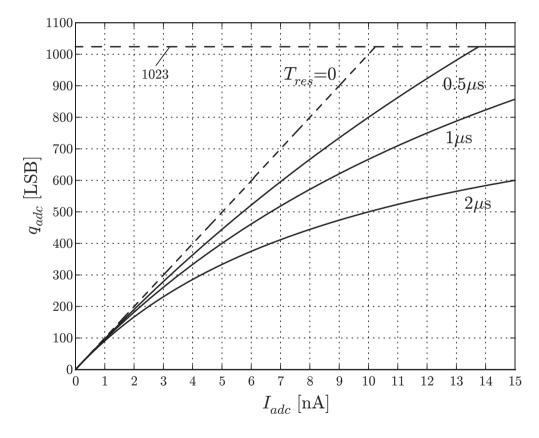
#### ► Overall **charge integration**:

- Less sensitive to **pile-up** effects
- **Charge-sharing** can be compensated by digital post-processing
- Circuit **noise** can corrupt data

## **Proposed DPS Architecture**



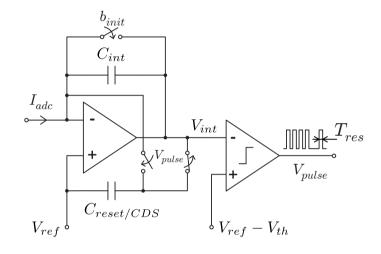

- ► Charge integration method
- ▲ Self-biasing for **digital-only I/O** and inter-pixel **low crosstalk**
- ▲ Linear ADC for high-flux X-rays


- ▲ Fixed-pattern noise (**FPN**) cancellation for image equalization
- ▲ Built-in test for pre-packaging screening
- ▼ All with **reduced pitch** and **low power**

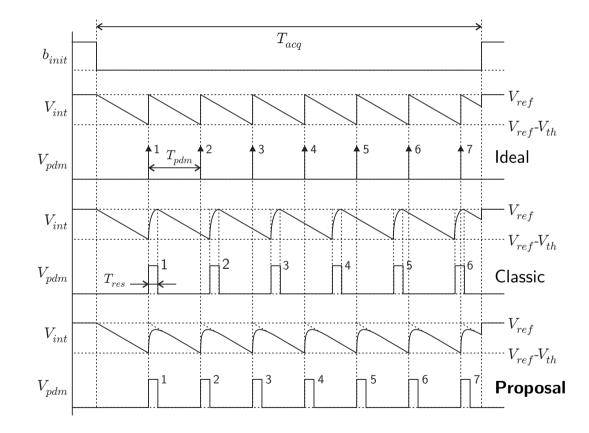
# Loss-Less A/D Conversion

**Classic** asynchronous integrate-and-fire (IAF) modulator:



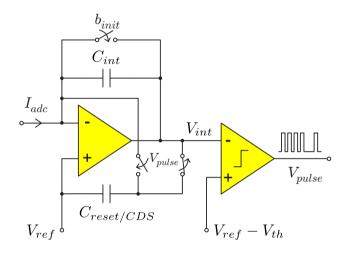

**Saturation** due to event reset time!



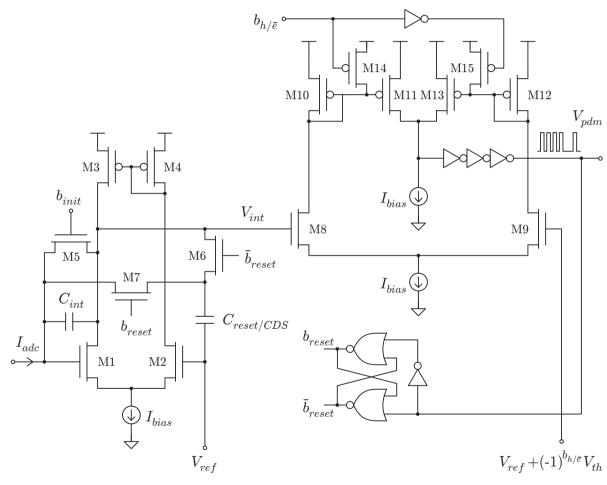

e.g.  $C_{int} = 100 \mathrm{fF}$ ,  $V_{th} = 200 \mathrm{mV}$ ,  $T_{caq} = 2 \mathrm{ms}$  and  $10 \mathrm{bit}$  output

# Loss-Less A/D Conversion

**Classic** asynchronous integrate-and-fire (IAF) modulator:

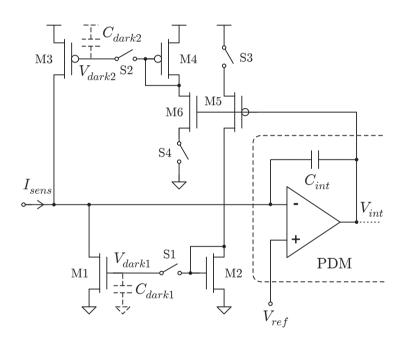



- ▲ Reset-time **independent**
- $\blacktriangle$  Max  $f_{pdm}$  close to  $1/T_{res}$
- **▼ Double**-capacitor area

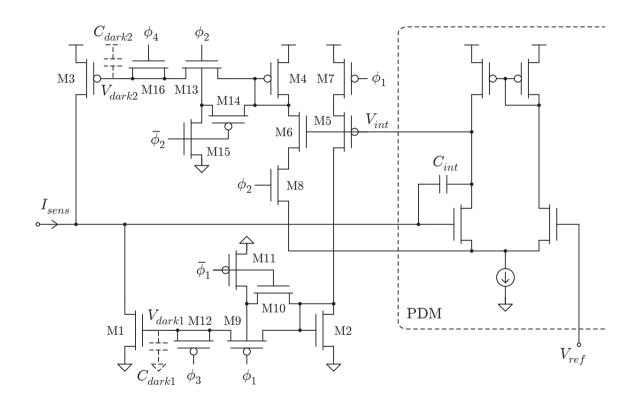



# Loss-Less A/D Conversion

► **Compact** CMOS circuit implementation:




▲ Bidirectional e<sup>-</sup>/h<sup>+</sup> charge collection

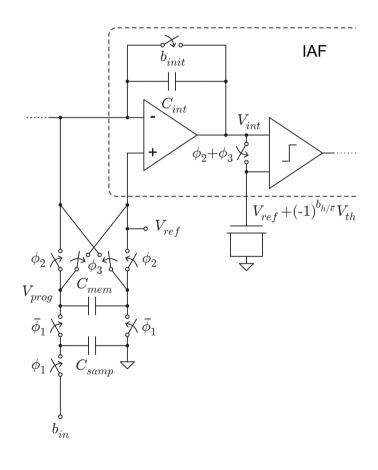



## **Dark-Current Cancellation**

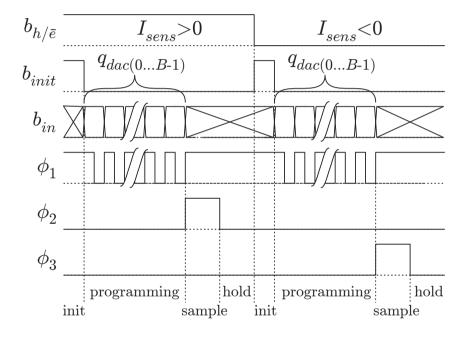
► Based on **current-copiers**:



▲ Reuse of ADC CMOS circuit for compact area



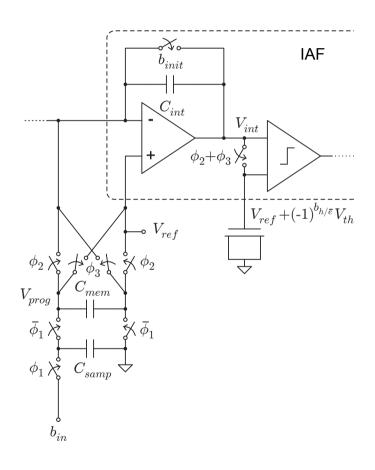

- ▲ Auto-calibration
- ▲ Coarse + fine for charge-injection compensation

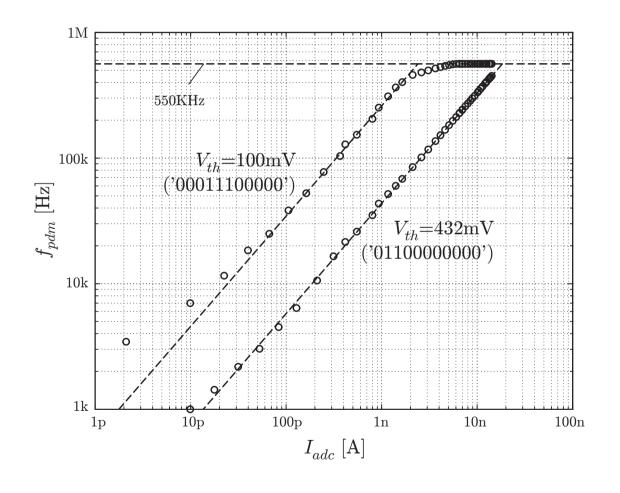

▲ Composite switches for **long retention** times

# **Individual-Pixel Gain Programmability**

► In-pixel SC **DAC** circuit:



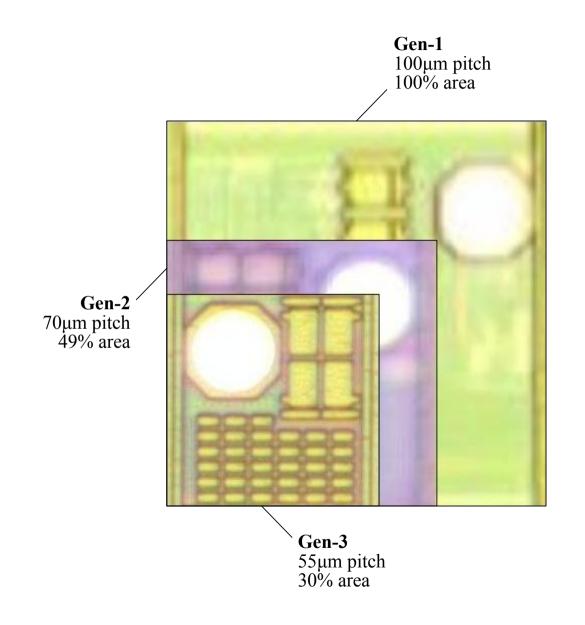

▲ Reuse of ADC CMOS circuit for compact area




- ▲ Serially **program-in** during read-out (no speed reduction)
- ▲ Gain **FPN** compensation
- ▲ Also for **built-in test** through input charge injection...

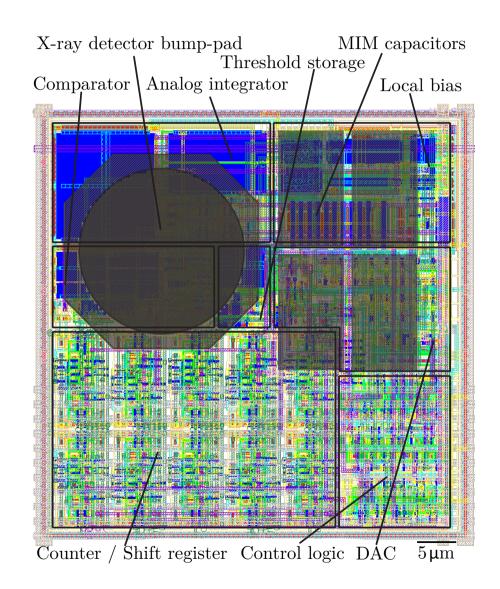
# **Individual-Pixel Gain Programmability**

► In-pixel SC **DAC** circuit:






# **DPS CMOS Integration**


- ► 1.8V 0.18µm 1P6M CMOS technology
- **Pitch** evolution:  $100\mu m$  (Gen-1), 70µm (Gen-2) and  $55\mu m(Gen-3)$

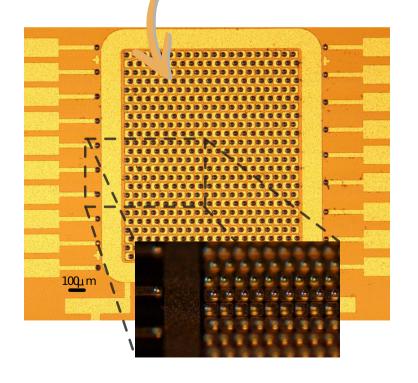
| Parameter       | Value     | Units   |
|-----------------|-----------|---------|
| $I_{bias}$      | 450       | nA      |
| $V_{ref}$       | 760       | mV      |
| $C_{int}$       | 85        | fF      |
| $C_{reset/CDS}$ | 85        | fF      |
| $C_{mem}$       | 85        | fF      |
| $C_{samp}$      | 85        | fF      |
| $V_{th}$        | 40 to 400 | mV      |
| $T_{reset}$     | 0.5       | $\mu s$ |
| N               | 10 to 12  | bit     |

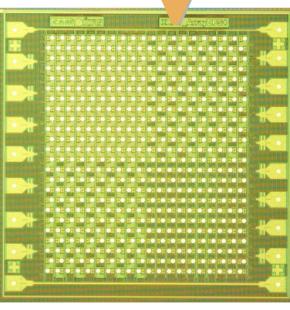


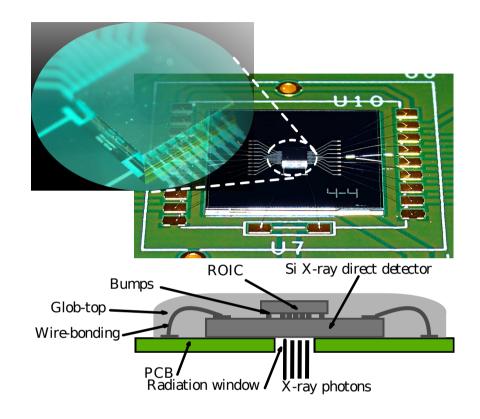
- ► 1.8V 0.18µm 1P6M CMOS technology
- Pitch evolution: 100µm (Gen-1), 70µm (Gen-2) and 55µm(Gen-3)

| Parameter       | Value     | Units   |
|-----------------|-----------|---------|
| $I_{bias}$      | 450       | nA      |
| $V_{ref}$       | 760       | mV      |
| $C_{int}$       | 85        | fF      |
| $C_{reset/CDS}$ | 85        | fF      |
| $C_{mem}$       | 85        | fF      |
| $C_{samp}$      | 85        | fF      |
| $V_{th}$        | 40 to 400 | mV      |
| $T_{reset}$     | 0.5       | $\mu s$ |
| N               | 10 to 12  | bit     |



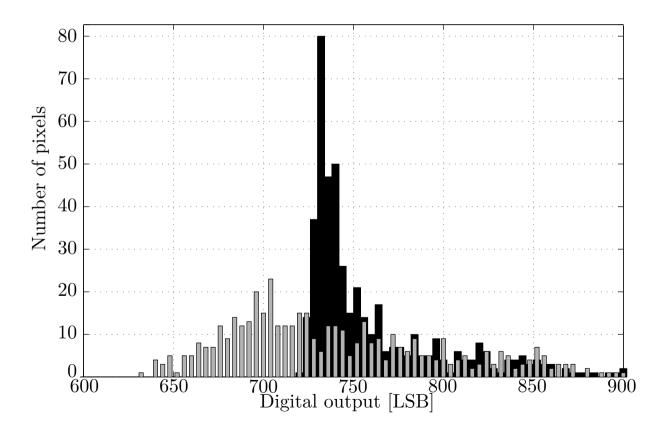

# **DPS CMOS Integration**

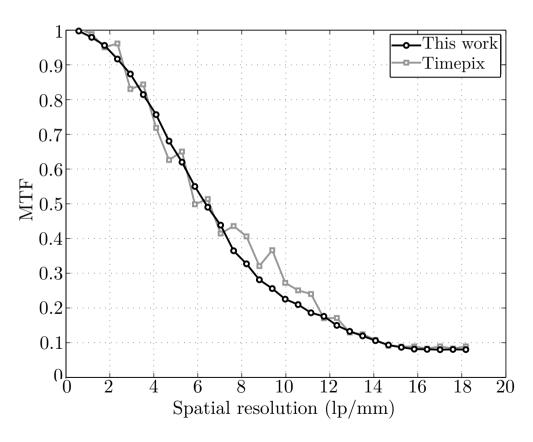

- ► 1.8V 0.18µm 1P6M CMOS technology
- Pitch evolution: 100µm (Gen-1), 70µm (Gen-2) and 55µm(Gen-3)


| Parameter                | Gen-1            | Gen-2          | Gen-3          | Units                |
|--------------------------|------------------|----------------|----------------|----------------------|
| Supply voltage           | 1.8              | 1.8            | 1.8            | V                    |
| Reference voltage        | 650              | 815            | 830            | mV                   |
| Biasing current          | 270              | 550            | 500            | nA                   |
| Bias mismatching         | < 10             | < 10           | < 15           | %                    |
| Typical transfer gain    | 1/50             | 1/50           | 1/50           | LSB/ke <sup>-</sup>  |
| Full scale               | > 10             | > 10           | > 10           | nA                   |
| Integration time         | 1 to 1000        | 1 to 1000      | 1 to 1000      | ms                   |
| Output dynamic range     | 10               | 10             | 12             | bit                  |
| Digital I/O speed        | > 50             | > 60           | 100            | Mbps                 |
| PDM pulses frequency     | 600              | 600            | 800            | kHz                  |
| Dark current range       | up to 20         | up to 20       | N.A.           | nA                   |
| Compensated dark current | 95               | 95             | N.A.           | %                    |
| Equivalent noise charge  | < 2              | < 2            | < 2            | $ke^{rms}$           |
| Crosstalk                | no               | no             | no             |                      |
| Static power consumption | 5                | 8              | 6              | $\mu W$              |
| Integrating capacitor    | 100              | 100            | 100            | fF                   |
| Silicon area             | $100 \times 100$ | $70 \times 70$ | $55 \times 55$ | $\mu$ m $	imes\mu$ m |

# X-Ray Test ICs

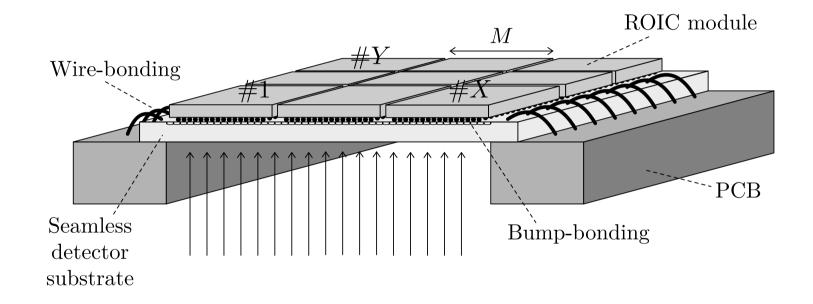
- ► Small arrays of DPS cells in standard UMC 0.18µm 1P6M MIM CMOS technology
- Si pixelated detectors in inexpensive IMB-CNM(CSIC) 2.5µm 2P1M PIP CMOS technology





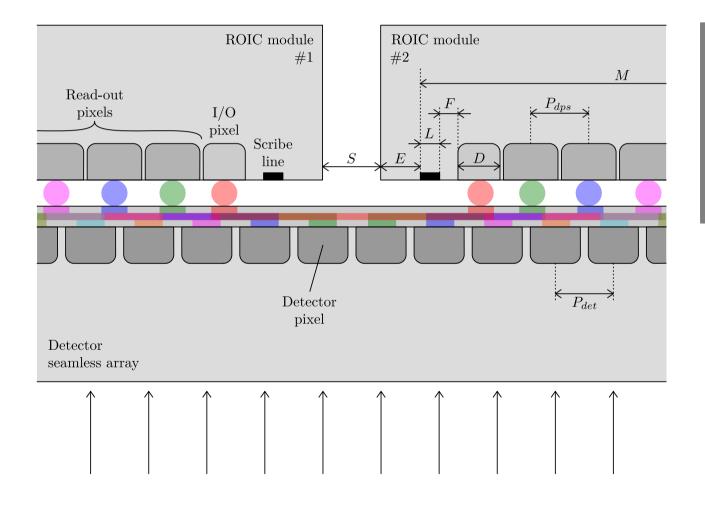

# X-Ray Test ICs

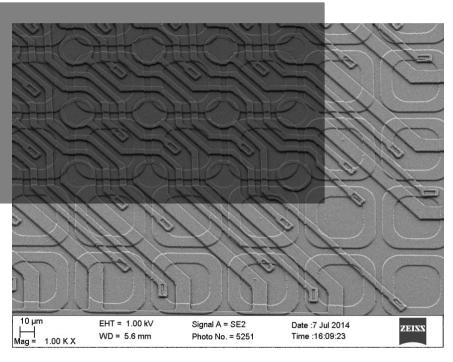

▲ Good DPS results in terms of maximum SNDR, FPN reduction, spatial resolution, crosstalk...





## True 2D Modular X-Ray Imagers


► Array of read-out ICs attached to **seamless** pixelated detector substrate:

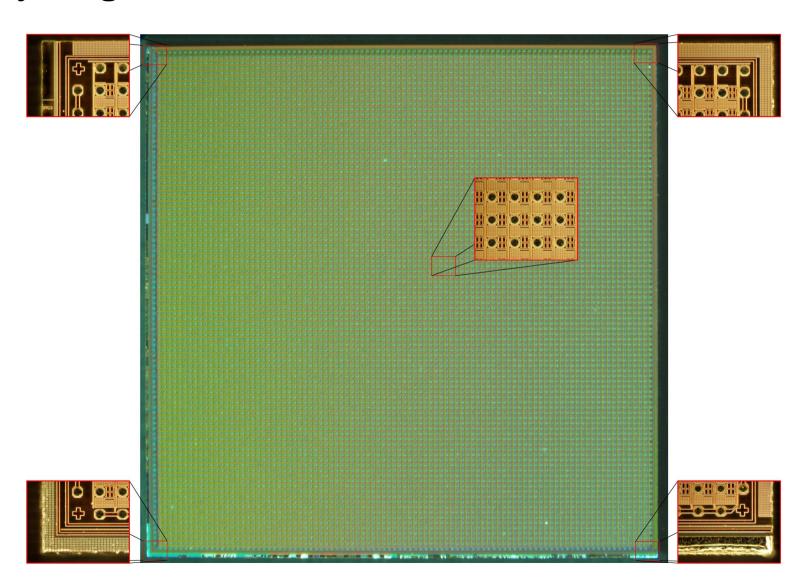



▲ Final goal is to reduce **CMOS** costs for large area imagers...

## True 2D Modular X-Ray Imagers

► Array of read-out ICs attached to **seamless** pixelated detector substrate:

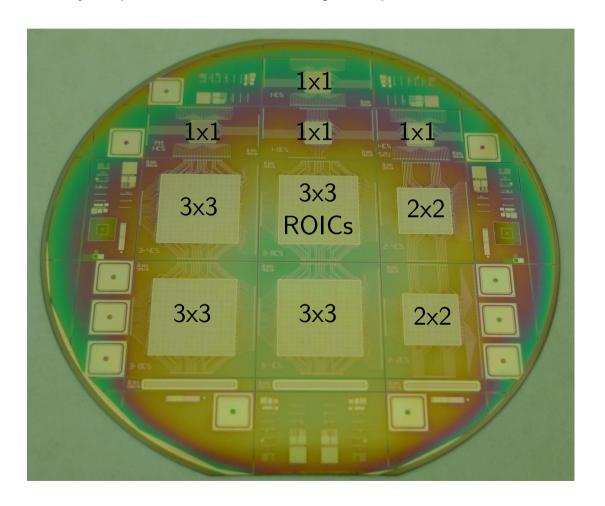


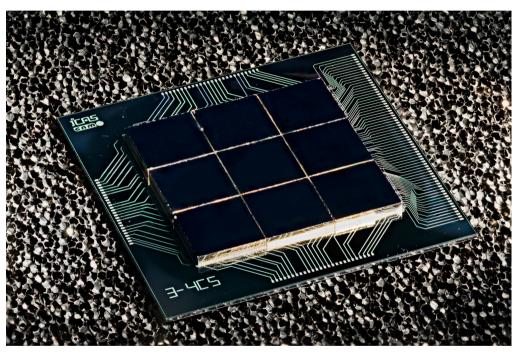



- ▲ Pixel detector-to-circuit **rerouting**
- ▼ Inter-pixel **crosstalk**?

Application Specific ROICs for Smart Sensors Space X-Ray Electrochemical

# True 2D Modular X-Ray Imagers


- ► CMOS **ROIC** module
  - 94×94 pixel (5mmx 5mm)
  - 52µm-pitch
  - $6\mu W/pix$  at 1.8V






### True 2D Modular X-Ray Imagers

► 55µm-pitch **seamless arrays** of pixelated Si detectors in 4-inch wafers:

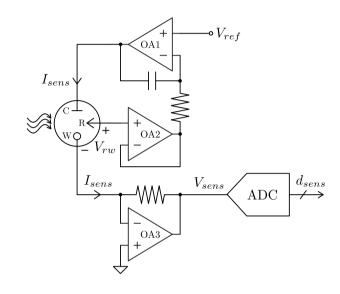


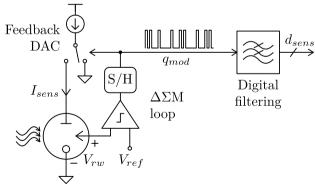


- R. Figueras et al.

  A 70-um Pitch 8-uW Self-Biased Charge-Integration Active Pixel for Digital Mammography
  IEEE Transactions on Biomedical Circuits and Systems, 5:5(481-489), Oct 2011
  doi.org/10.1109/TBCAS.2011.2151192
- R. Figueras et al.

  Experimental Characterization of a 10uW 55um-pitch FPN-Compensated CMOS Digital Pixel Sensor for X-ray Imagers, Elsevier Nuclear Instruments and Methods in Physics Research A, 761(19−27), Oct 2014 doi.org/10.1016/j.nima.2014.05.085

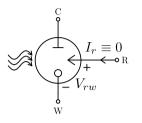

F. Serra Graells

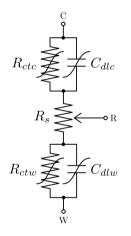

- High-Resolution SC Delta-Sigma ADC for Space Applications
- Compact Pixel Integrating ADC for X-Ray Imagers
- Low-Power Potentiostatic CT Delta-Sigma ADC for Electrochemical Integrated Sensors

### **Smart Electrochemical Sensors**

- Integrated chemical sensors:
  - Interaction with microorganisms
  - Selectivity by functionalization
  - Speed limitation
  - Reduced life time
  - Packaging costs
- ► Electrochemical family:
  - CMOS compatible
  - Potentiostatic biasing
  - Amperometric reading
- **▼ Classic** circuit interfaces require multiple OpAmps + resistors + ADC
- **Low-power MOS-only** circuit proposal based on mixed electronic and chemical domain potentiostatic  $\Delta\Sigma$  modulator



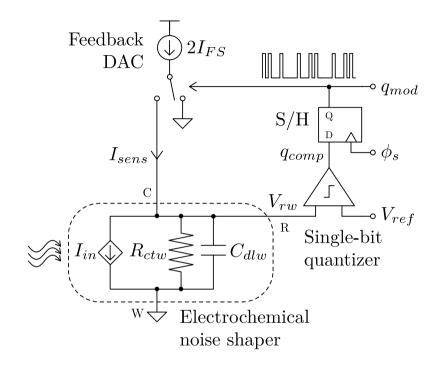





# **Sensor Modeling**

- ▶ Reuse of sensor dynamics for circuit design needs accurate device modeling!
- ▶ Reference, Working and Counter planar microelectrodes
- Non-linear electrical impedance model under **potentiostatic** operation:
  - $R_s$  = electrolyte solution resistance
  - $R_{ctx} = charge-transfer resistance$
  - $ightharpoonup C_{dlx} = double-layer capacitance$
- ▲ Solution resistance smaller than electrode-solution counterparts  $(10^2 kΩ)$
- ▲ Similar impedance results with internal (micro) and external (macro) counter microelectrodes
- ▲ Simplified linear dynamic model

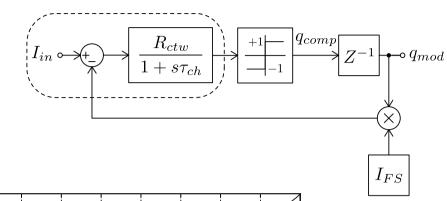


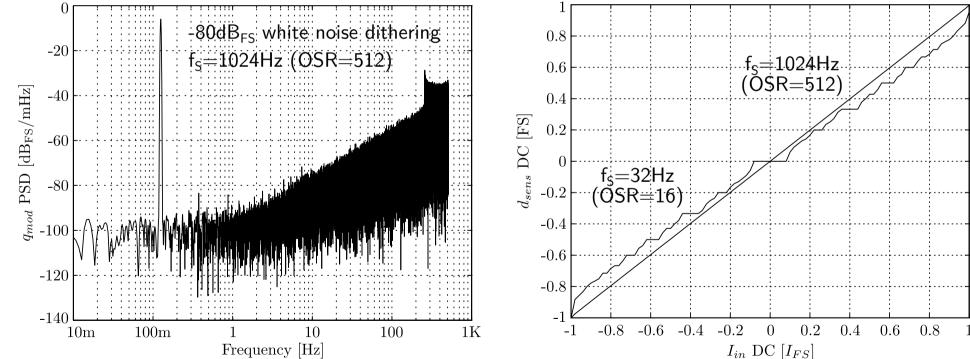





### **ΔΣ** Modulator Architecture

- Behavior similar to **low-pass first-order** single-bit CT  $\Delta\Sigma$  A/D modulator
- ► Error current is converted into voltage and shaped in frequency by the electrochemical sensor itself
- Quantization, S/H and DAC feedback in electronic domain
- **Amperometric** read-out through the  $\Delta\Sigma$  modulation of output bit stream q<sub>mod</sub> by chemical input I<sub>in</sub>
- ▲ Overall negative feedback ensures potentiostatic operation by keeping  $V_{rw}$  biased closed to  $V_{ref}$  potential
- $\triangle$  High oversampling ratios (OSR>100) can be easily obtained with kHz-range clock frequencies f<sub>s</sub>

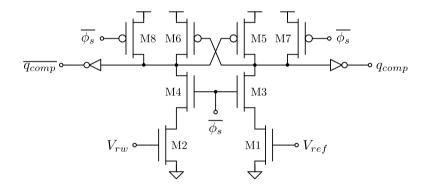




Class-A full scale: 
$$I_{FS} = rac{V_{ref}}{R_{ctw}}$$

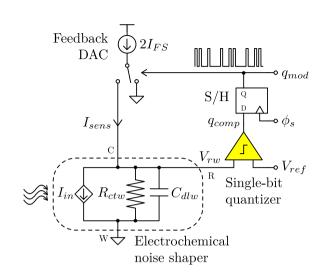
Electrochemical time constant:  $\tau_{ch} = R_{ctw}C_{dlw} \sim 10^{-1}s$ 

## **ΔΣ** Modulator Optimization

- $\blacktriangledown$  Typical **tonal components** of first-order  $\Delta\Sigma$  modulation are attenuated through **thermal noise dithering** at DAC
- ▼ Fractal staircase DC transfer function due to DT losses of CT electrochemical integrator is improved by increasing OSR

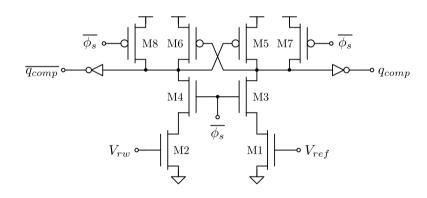






e.g.  $\Delta\Sigma M$  behavioral simulation for  $R_{ctw}=500k\Omega$ ,  $\tau_{ch}=0.16s$ ,  $V_{ref}=1V$  and  $I_{ES}=2\mu A$ 

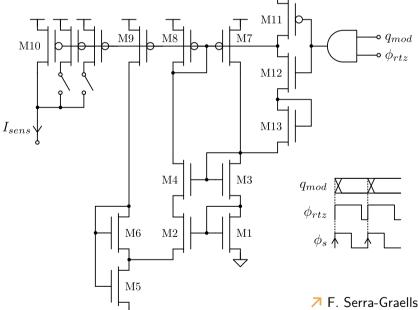
# **Low-Power MOS-Only Circuits**

- ▲ Two analog blocks only
- ► Latched comparator for 1-bit quantization:




- **Technology mismatching** does not cause distortion but DC offset at V<sub>rw</sub>
- If  $V_{ref}$  is chosen higher than redox potential, electrochemical signals can tolerate comparator **offsets** as large as  $\pm 10 \text{mV}$




## **Low-Power MOS-Only Circuits**

- ▲ Two analog blocks only
- ► Latched comparator for 1-bit quantization:



- **Technology mismatching** does not cause distortion but DC offset at V<sub>rw</sub>
- If  $V_{ref}$  is chosen higher than redox potential, electrochemical signals can tolerate comparator offsets as large as  $\pm 10 \text{mV}$

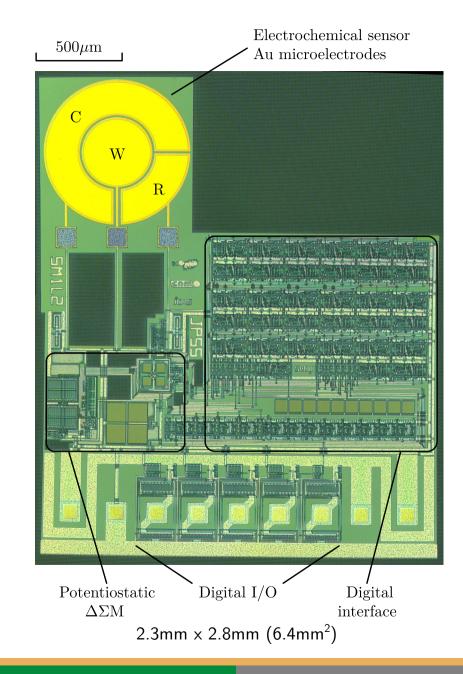
► Compact reference generator for current DAC:





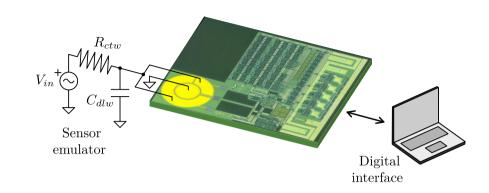
- **Programmable full scale** for different integrated sensor designs
- Power in/off instead of current steering operation to reset all MOSFETs and reduce flicker noise
- RTZ signaling in order to avoid typical waveform asymmetries issues of CT  $\Delta\Sigma$ Ms
- ▼ F. Serra-Graells and J. L. Huertas

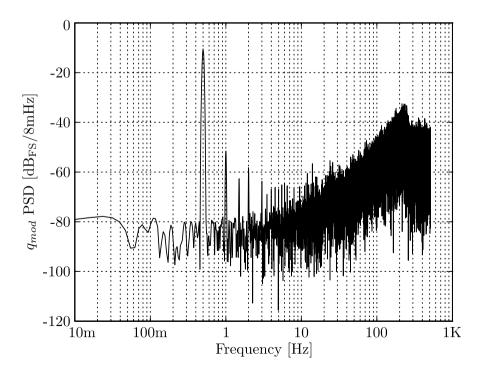
  Sub-1V CMOS Proportional-to-Absolute-Temperature References


  IEEE J. Solid-State Circuits, 38:1(84-88), Jan 2003

  doi.org/10.1109/JSSC.2002.806258

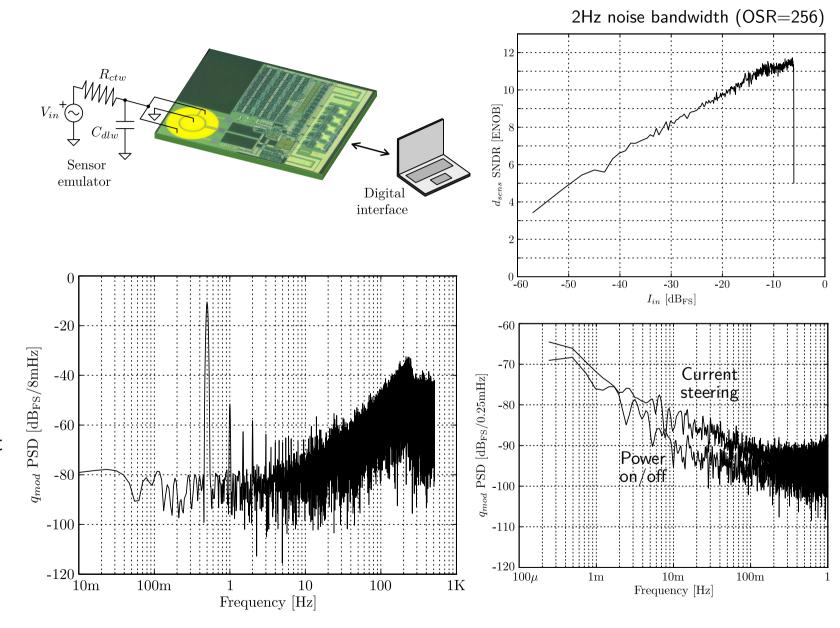
Application Specific ROICs for Smart Sensors Space X-Ray Electrochemical


# Monolithic CMOS Integration


- ► Inexpensive 2.5µm 1M CMOS technology (CNM25)
- ► In-house **sensor post-processing** at wafer level consisting on sputtering of Ti(15nm)+Au(150nm) thin films and lithographic patterning by lift-off
- Sensor layout design: D<sub>in</sub>=390μm, D<sub>out</sub>=830μm and S=30μm
- Sensor electrical model:  $R_{ctw}$ =500kΩ and  $\tau_{ch}$ =0.16s
- $ightharpoonup \Delta \Sigma M$  design parameters:  $V_{ref}=1V$ ,  $I_{FS}=2\mu A$  and  $f_{S}=1024Hz$  (OSR=512)
- **Low-area** overhead of proposed  $\Delta\Sigma M$
- ightharpoonup Digital-only interface for low-pass filtering +  $V_{ref}$  and  $I_{FS}$  programming

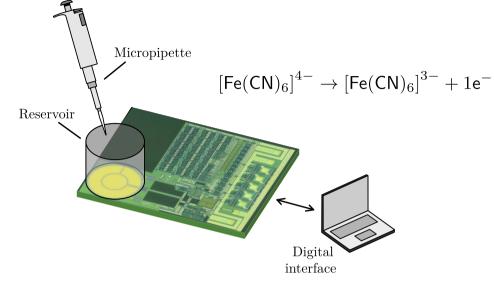


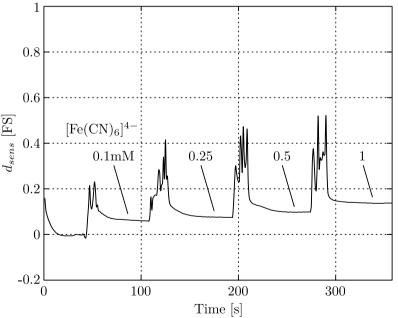
### **Electrical Tests**


- ▶ Sensor emulation with external network ( $R_{ctw}$ =500k $\Omega$ ,  $C_{dlw}$ =330nF) and SRS DS360 generator in equivalent Thévenin configuration
- ▲ Although dithering noise at DAC should be increased, PSD returns good **robustness** against tones



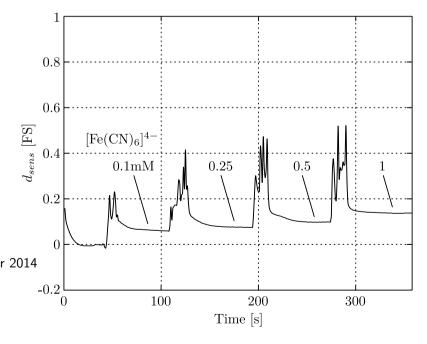



#### **Electrical Tests**


- ▶ Sensor emulation with external network ( $R_{ctw}$ =500k $\Omega$ ,  $C_{dlw}$ =330nF) and SRS DS360 generator in equivalent Thévenin configuration
- ▲ Although dithering noise at DAC should be increased, PSD returns good **robustness** against tones
- Quasi-static response shows high enough SNDR to not limit electrochemical sensor resolution
- ▲ Statistical analysis on 9 samples returns DR deviations below  $\pm 0.5$ bit
- ▲ Experimental comparison between **power-on/off** and current steering DAC operation points to 3dB flicker noise reduction

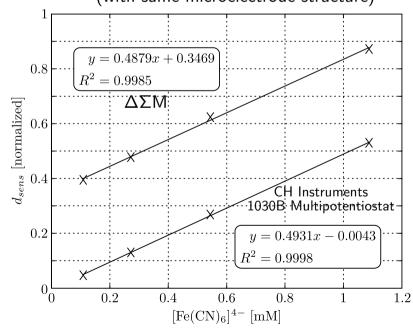


### **Electrochemical Tests**


- ► **Standard experiment** based on ferrocyanide ion oxidation into ferricyanide:
- ▶ 10µL reservoir with ferrocyanide dissolved in Phosphate buffer solution (PBS) at pH=7
- ► **Ion concentration** swept from 0.1mM to 1mM and **potentiostatic** V<sub>ref</sub>=0.7V
- ▲ Electrochemical **time constant** as expected...






#### **Electrochemical Tests**

- ▲ Remarkable **linearity** below 1mM
- ▲ Comparable to lab **desktop equipment**
- ▲ Good **performance** for sensing applications
- ▲ Very **low-power** operation compared to sensor consumption itself (can improve with low-voltage CMOS technologies)



| Parameter                            | Value            | Units       |
|--------------------------------------|------------------|-------------|
| Full scale range                     | 2 to 32          | $\mu$ A     |
| Potential range                      | 0 to 5           | V           |
| Sampling frequency                   | 1                | kHz         |
| Oversampling ratio                   | ≥256             |             |
| Electrical dynamic range             | >10              | <b>ENOB</b> |
| Residual standard deviation $(n=6)$  | <15              | %           |
| Coefficient of determination $(R^2)$ | 0.9985           |             |
| Supply voltage                       | 5                | V           |
| Power consumption at $2\mu A_{FS}$   | 25               | $\mu W$     |
| Die size                             | $2.3 \times 2.8$ | $mm^2$      |





→ S. Sutula, et al. A 25-μW All-MOS Potentiostatic Delta-Sigma ADC for Smart Electrochemical Sensors IEEE Transactions on Circuits and Systems-I, 61:3(671-679), Mar 2014 doi.org/10.1109/TCSI.2013.2284179