Teaching Mixed-Mode Full-Custom VLSI Design with gaf, SpiceOpus and Glade

S. Sutula¹, F. Vila¹, <u>J. Pallarès</u>¹, K. Sabine², L. Terés^{1,3} and F. Serra-Graells^{1,3} jofre.pallares@imb-cnm.csic.es

¹Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

²Peardrop Design Systems Ltd

³Dept. of Microelectronics and Electronic Systems Universitat Autònoma de Barcelona

May 2014

1 Introduction

- 2 Schematic Entry
- 3 Mixed-Mode HDL Simulation
- 4 Automatic Circuit Optimization
- 5 Full-Custom Layout Design and Verification

Scheme

XSpice

Motivation and Objectives

Problems teaching VLSI deign at lab:

- Professional EDA tools requirements (licenses, hardware, administration)
- Technology confidentiality
- Limited lab session time

EDA environment proposal for mixed-mode full-custom ASIC design:

gaf (gschem and friends) for schematic edition and netlisting

SpiceOpus (SPICE with integrated optimization utilities) for mixedmode HDL-electrical simulation

CUU

Glade (<u>GDS</u>, <u>LEF</u> and <u>DEF</u> editor) for layout design and verification

Freeware, available for 🎥

PDK development

Case Study

- 14-bit 8kHz 2V_{dp} A/D ΔΣM
 - Mixed signal domains
 - HDL modeling required due to oversampling
- 2P2M 2.5µm CMOS (CNM25) target technology
 - Reduced DRC rule set
 - Simple device modeling
 - Easy PDK development

ເພື່ອງເພ

1 Introduction

- 2 Schematic Entry
- **3** Mixed-Mode HDL Simulation
- **4** Automatic Circuit Optimization
- **5** Full-Custom Layout Design and Verification

Schematic Entry

e.g. $\Delta\Sigma M$ architecture

.model mki1 kgain(k=0.3)

.model mki2 kgain(k=0.7)

.model mkff kgain(k=2.0)

+ %v(vquantin) msumout

+ out_min=-5.0 out_max=5.0)

+ out_min=-5.0 out_max=5.0)

+ t_rise=1e-9 t_fall=1e-9) adac %d(dout) %v(vdac) mdac

.model mdac dac2lsym(out_level=2.0)

- Fully customizable **symbols**
- Programmable **netlisting** rules for standard SPICE devices and custom XSpice models

Library browsing, net and pin labeling, hierarchical navigation, instance annotation and automatic **rewiring**...

CUU

.ends

- **1** Introduction
- **2** Schematic Entry
- 3 Mixed-Mode HDL Simulation
- **4** Automatic Circuit Optimization
- **5** Full-Custom Layout Design and Verification

Architecture HDL Simulation

Students can code in C their own mixed-mode XSpice HDL models

e.g. Z-domain integrator with built-in limiter XSpice code model

Architecture HDL Simulation

- Students can code in C their own mixed-mode XSpice HDL models
- Nutmeg scripting allows to manage several circuits and analysis at the same time
- Auxiliary external programs may be also combined

CUU

ገባና

 Mixed HDL-electrical simulation to define circuit block requirements

_ opamp.ifs

e.g. OpAmp specification study

ເພື່ອງເພີ

- **1** Introduction
- **2** Schematic Entry
- **3** Mixed-Mode HDL Simulation
- 4 Automatic Circuit Optimization
- **5** Full-Custom Layout Design and Verification

Automatic Circuit Optimization

- Routine scripting:
 - Design parameters
 - Figures-of-merit (FoMs)
 - Implicit rules for discarding solutions
 - Cost function to score candidates

ເພື່ອກັ

Automatic Circuit Optimization

- Routine scripting:
 - Design parameters
 - Figures-of-merit (FoMs)
 - Implicit rules for discarding solutions
 - Cost function to score candidates

Students can customize all steps and review results:

ເພື່ອງເພີ

- **1** Introduction
- **2** Schematic Entry
- **3** Mixed-Mode HDL Simulation
- **4** Automatic Circuit Optimization
- **5** Full-Custom Layout Design and Verification

PCell-Based Layout Design

Fully featured full-custom layout editor

ເພື່ອງເປັນ

PCell-Based Layout Design

- Fully featured full-custom
 layout editor
- Parameterized cells (PCells) developed in Python

 Students can design analog layout quickly while preserving matching rules

ເພື່ອເປັນ

Design Rule Checker

- User friendly interface for debugging DRC errors
- Design rules set entirely scripted in Python
- Students can learn how a DRC is programmed (boolean operations, derived layers, geometrical concepts)

e.g. CNM25 DRC script

LVS and Parasitics Extraction

- User friendly interface for debugging ERC errors
- Extraction rules set entirely scripted in Python

e.g. CNM25 extraction script

cnm25xtr.py geomLabel(polygate, "POLY1", "pin", 1) geomLabel(polygate, "POLY1", "net", 0) geomConnect([[cont, ndiff, pdiff, polygate, polycap, metal1], [via12, metal1, metal2]...]) extractMOS("cnm25modn", ngate, polygate, ndiff, pwell) extractParasitic3(pdiff, metal2, cmetal2diff, 0, [metal1, polygate, polycap]) ...

e.g. OpAmp layout extraction

LVS and Parasitics Extraction

e.g. OpAmp with LVS errors

- User friendly interface for debugging ERC errors
- Extraction rules set entirely scripted in Python
- Gemini-based layout
 versus schematic (LVS)
- Extraction of SPICE netlists with parasitic capacitors for postlayout simulation

e.g. OpAmp extracted netlist

opamp_par.sub .SUBCKT opamp vinn vinp vout vdd vss ibias MM0 vdd ibias vdd vdd cnm25modp w=1.2e-05 l=6e-06 as=... MM1 vdd ibias vout vdd cnm25modp w=1.2e-05 l=6e-06 as=... Cc0 vinter vout cnm25cpoly w=6.42928e-05 l=0.000156207 MM8 vout ibias vdd vdd cnm25modp w=1.2e-05 l=6e-06 as=... ... CP1 vinter vss C=3.8582e-13 CP2 vout ibias C=3.33692e-15 CP3 vinp vss C=1.85938e-15 CP4 vout vcomm C=2.0918e-15ENDS

- Students can debug circuit connectivity or device size **matching** errors in the same environment
- Students can evaluate losses in circuit performance due to layout parasitics

- **1** Introduction
- **2** Schematic Entry
- **3** Mixed-Mode HDL Simulation
- **4** Automatic Circuit Optimization
- **5** Full-Custom Layout Design and Verification

- Complete EDA environment for teaching mixed-mode fullcustom VLSI design
- Students can gain hands-on experience on:
 - Schematic entry
 - HDL system simulation
 - HDL block specification
 - Automatic circuit optimization
 - DRC and LVS
 - PCell-based layout
 - Parasitics extraction
- Practical A/D ΔΣM circuit design case in simple CMOS technology

Other sources:

UAB

102726: Design of Analog and Mixed Integrated Circuits and Systems http://www.cnm.es/~pserra/uab/damics

42838: Integrated Heterogeneous Systems Design http://www.cnm.es/~pserra/uab/ihsd

ເມນູ ເອັ

Jofre Pallarès EWME 2014

