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Abstract—This paper presents a freeware EDA framework for teaching
mixed-mode full-custom VLSI design. The proposed set of EDA tools
and associated physical design kit (PDK) allows students to gain hands-
on experience on ASIC design tasks covering schematic entry, both at
system and circuit levels, HDL system simulation and block specification,
automatic circuit optimization, PCell-based layout, physical verification,
parasitics extraction, post-layout simulation and tape-out. A practical
design case based on a ∆Σ modulator for A/D conversion in a simple
CMOS technology is supplied to illustrate the capabilities of the pro-
posed EDA framework. Students can easily make use of the presented
environment both at laboratory and at home, since all EDA tools are
available for MS Windows and Linux platforms.

I. INTRODUCTION

Teaching VLSI design imposes real challenges when preparing
hands-on laboratory exercises, specially for mixed-mode full-custom
ASIC design cases. Professional EDA tools for this purpose usu-
ally involve expensive licenses, powerful hardware requirements
and complex system administrator tasks. Furthermore, modern deep
submicron CMOS technologies are in practice too complex to get
familiar with during short laboratory practices, and their process
information is often confidential. Last but not least, students usually
do not have enough laboratory sessions to truly develop full-custom
layout designs.

In order to overcome the above issues, this paper proposes the
freeware EDA framework of Fig. 1 for teaching mixed-signal full-
custom VLSI design. Although not strictly professional, these alter-
native EDA tools and associated physical design kit (PDK) cover
most design steps and they can be easily customized for academic
purposes. Moreover, students can exploit the proposed environment
at home, as it is available for both MS Windows and Linux platforms
and its installation is straightforward. In particular:

• gaf (gschem and friends) includes a customizable schematic
editor (gschem) together with a programmable netlister (gnetlist)
all featuring Scheme scripting language [1]. It is part of the
open source gEDA (GPL EDA) suite initially developed by Ales
Hvezda [2].

• SpiceOpus (SPICE with integrated optimization utilities) by
the CACD Group at University of Ljubljana [3] is a port of
the Berkeley SPICE3F5 electrical simulator featuring Nutmeg
scripting language [4], plus a custom optimization tool and the
Georgia Tech Research Institute XSpice multi-domain event-
driven engine [5]. The resulting simulation suite can perform
native mixed-signal circuit and system simulation and optimiza-
tion.

• Glade (GDS, LEF and DEF editor) by Keith Sabine [6] is an
IC mask layout editor and physical verification tool featuring
Python scripting language [7].
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Figure 1. Proposed EDA framework for teaching mixed-signal full-custom
VLSI design methodology.

In order to illustrate the capabilities of the proposed EDA frame-
work, the practical design case of Fig. 2 is presented: a delta-sigma
modulator (∆ΣM) [8] for a 14-bit 8kHz 2Vdp-input ADC. Apart from
dealing with both analog and digital signal domains, the oversampling
nature of this exercise also requires modeling at several abstraction
levels to speed up its simulation. Concerning the ∆ΣM single-loop
architecture of Fig. 2(b), a second-order noise shaper with single-
bit quantizer is chosen here to avoid stability and distortion issues,



respectively. Furthermore, nested feedforward loops are added to
optimize signal full-scale at the cost of adding an extra summer at
the input of the quantizer [9].
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Figure 2. General architecture of a ∆Σ oversampling ADC (a) and differential
voltage model in the Z-domain of the proposed ∆ΣM design case (b).

Following the academic purposes of this proposal, target technol-
ogy is chosen to be the IMB-CNM(CSIC) 2.5µm 2P2M CMOS
process (CNM25) depicted in Fig. 3. Although very simple, this
technology allows students to deal with a limited number of layers
and design rules during layout edition and physical verification stages,
respectively, together with a reduced set of device model parameters
for circuit design, as shown in Fig. 4. Nevertheless, the proposed EDA
environment can be extended to modern technologies if required.
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Figure 3. CNM25 technology cross section and device primitives.

II. SCHEMATIC ENTRY

Following the proposal of Fig. 1, all schematic entries at system
and circuit levels are performed through gschem editor. Despite its
simplicity, this tool already supports symbol edition, library browsing,
net and pin labeling, hierarchical navigation, instance annotation and
automatic rewiring, among other features. As an example, Fig. 5
depicts the schematic of the ∆ΣM design case of Fig. 2(b) being

(a) cnm25proc.lib

.lib model

.model cnm25modn nmos level=2 vto={vton} uo={uon} tox=...

.model cnm25modp pmos level=2 vto={vtop} uo={uop} tox=...

.model cnm25cpoly c cj={cj} cjsw=0.0

.endl

.lib ttt

.param vton=.942

.param vtop=-1.139

.param uon=648

.param uop=213

.param cj=4.227E-4

.lib ’cnm25proc.lib’ model

.endl

(b) cnm25match.lib

.param avto=30e-9

.param rauo=5e-8

.param rac=7.3e-8

.subckt cnm25modn d g s b param: w=3u l=3u
+ ad=0 as=0 pd=0 ps=0 m=1
.param vton=.942+rndgauss(avto/sqrt(m*w*l))
.param uon=648*(1+rndgauss(rauo/sqrt(m*w*l)))
.model modnlocal nmos level=2 vto={vton} uo={uon} tox=...
mn d g s b modnlocal w={w} l={l}
+ ad={ad} as={as} pd={pd} ps={ps} m={m}
.ends

.subckt cnm25cpoly t b param: w=30u l=30u m=1

.param cj=4.227E-4*(1+rndgauss(rac/sqrt(m*w*l)))

.model cpolylocal c cj={cj} cjsw=0.0
cpip t b cpolylocal w={w} l={l} m={m}
.ends

Figure 4. Portion of CNM25 process (a) and mismatching (b) device model
files for corner and Montecarlo SPICE simulation.

edited in gschem using our own custom symbol library. Taking
advantage of Scheme scripting, the accompanying tool gnetlist can
be programmed to generate the ∆ΣM equivalent netlist of Fig. 6
following the particular syntax rules required by XSpice.

querying component (q)
Add ! Component... (i)

Figure 5. ∆ΣM architecture of Fig. 2(b) edited in gschem.



dsm-arch.sub

.subckt dsm_arch vin dclk dout
asumin [%v(vin) %v(vdac)] %v(verr) msumin
.model msumin usummer(sign=[1.0 -1.0])
aki1 %v(verr) %v(vint1in) mki1
.model mki1 kgain(k=0.3)
azint1 %v(vint1in) %d(dclk) %v(vint1out) mzint1
.model mzint1 zinteg2lim(pos_edge=0 out_ic=0.0
+ out_min=-5.0 out_max=5.0)

aki2 %v(vint1out) %v(vint2in) mki2
.model mki2 kgain(k=0.7)
azint2 %v(vint2in) %d(dclk) %v(vint2out) mzint2
.model mzint2 zinteg2lim(pos_edge=0 out_ic=0.0
+ out_min=-5.0 out_max=5.0)

akff %v(vint1out) %v(vkffout) mkff
.model mkff kgain(k=2.0)
asumout [%v(vint2out) %v(vkffout) %v(vin)]
+ %v(vquantin) msumout

.model msumout usummer(sign=[1.0 1.0 1.0])
aquant %v(vquantin) %d(~dclk) %d(dout) mquant
.model mquant quant2lsh(inp_th=0.0 out_ic=0 pos_edge=0
+ t_rise=1e-9 t_fall=1e-9)

adac %d(dout) %v(vdac) mdac
.model mdac dac2lsym(out_level=2.0)
.ends

Figure 6. XSpice netlist generated from the ∆ΣM schematic of Fig. 5.

III. ARCHITECTURE HDL SIMULATION

The use of hardware description languages (HDLs) for the val-
idation of mixed-mode integrated systems is highly recommended.
Not only it simplifies the co-simulation of analog and digital parts of
VLSI circuits, but it can also allow strong savings in terms of CPU
time. This feature is specially noticeable in oversampled systems, like
our ∆ΣM case study. For this purpose, the EDA framework proposed
in Fig. 1 takes benefit of XSpice mixed-signal code models (CMs),
which are compiled separately from the SpiceOpus engine. In this
sense, Fig. 7 shows the source code for one of these XSpice custom
CMs specifically developed for the ∆ΣM architecture of Fig. 5.

zinteg2lim.mod

void cm_zinteg2lim(ARGS) {
inp = INPUT(inp); /* Retriving input values */
clk = INPUT_STATE(clk);
pos_edge = PARAM(pos_edge); /* Retrieving parameters */
out_max = PARAM(out_ax);
...
switch (ANALYSIS) {
case TRANSIENT:
if ((*clk_mem==ONE)&&(clk==ZERO)) {/* Neg. clk edge */
if (pos_edge==FALSE)
action = SAMPLING_INTEGRATION;

} else {
if ((*clk_mem==ZERO)&&(clk==ONE)) {/* Pos. clk edge*/
if (pos_edge==TRUE)
action = SAMPLING_INTEGRATION;

} else { /* No clock edge */
action = HOLDING;

}
...
switch (action) {
case SAMPLING_INTEGRATION:

*inp_mem = inp;
out = *out_mem+*inp_mem;
if (out<out_min) { out = out_min; } /* Limiter */
if (out>out_max) { out = out_max; }

*out_mem = out;
break;
case HOLDING:
out = *out_mem;

}}}

Figure 7. Portion of the custom XSpice CM source for the ∆ΣM Z-domain
integrator (with limiter) blocks of Fig. 5.

In practice, students can easily get familiar with the C-like syntax
of CMs by simple inspection of source codes, like Fig. 7 or the large
collection of examples supplied with SpiceOpus. At this stage, the
high-speed simulation capabilities of XSpice HDL are exploited to
optimize our ∆ΣM architecture, as in Fig. 8 and 9.

cursor-based
measurement

Nutmeg console for
automatic test routines

Figure 8. Example of SpiceOpus XSpice automatic SQNDR extraction for
the ∆ΣM architecture of Fig. 5.

In particular, students can test the required oversampling ratio
(OSR) with the automatic computation of the resulting signal to
quantization noise and distortion ratio (SQNDR) like in Fig. 8. Based
on similar test routines scripted in Nutmeg language, the impact
on ∆ΣM dynamic range due to limited full-scale in Z-domain
integrators is evaluated in Fig. 9(a). Taking into account the target
switched capacitor (SC) circuit implementation, students can already
observe in Fig. 9(b) the effects caused by deviations in the capacitor
k-coefficients of Fig. 5 due to technology mismatching [10]. In this
case, students estimate k ranges from kT/C specs and the particular
CMOS process and mismatching parameters of Fig. 4.

(b)

(a)

Figure 9. Example of SpiceOpus XSpice simulation of SQNDR vs integrators
full-scale (a) and coefficient mismatching (b) for the ∆ΣM of Fig. 5.



IV. BLOCK HDL SPECIFICATION

Once system architecture is fixed, next step in the design methodol-
ogy depicted in Fig. 1 consists on specifying the required performance
for the basic building blocks of the VLSI circuit. In this way, the
circuit design and optimization for each block can be done separately
following Section V. This strategy does not avoid final simulations at
transistor level for the full system, but it speeds up the optimization
process for each part. In our design case, the specification of
the OpAmp blocks required for the switched-capacitor (SC) circuit
implementation of our ∆ΣM is chosen. In particular, the impact of
OpAmp blocks is modeled through their DC open-loop gain (G), gain
bandwidth product (GBW) and slew-rate (SR), as shown in Fig. 10.

SC OpAmp parameters

Figure 10. gschem schematic of the ∆ΣM architecture of Fig. 5 with built-in
SC OpAmp parameters.

For this purpose, students are asked first to analyze the CM
example of the Z-domain integrator supplied in Fig. 7 and develop
their own XSpice custom model by including OpAmp effects. Once
this CM is compiled and verified, the SC ∆ΣM topology of Fig. 10
is then simulated using Nutmeg test scripts similar to Section III but
focused on extracting the minimum G, GBW and SR specs for each
OpAmp stage, as depicted in Fig. 11.

(a)

(b)

Figure 11. Example of SpiceOpus XSpice simulation of SQNDR vs first
stage OpAmp performance {G=80dB, SR=20V/µs, GBW=40MHz} (a) and
{G=60dB, SR=8V/µs, GBW=20MHz} (b) for the ∆ΣM of Fig. 10.

V. AUTOMATIC CIRCUIT OPTIMIZATION

According to the methodology of Fig. 1, here the design is already
split into several circuit pieces for their optimization at transistor
level against the target CMOS technology. Typically, this optimization
process involves defining design parameters (i.e. size of devices
and biasing conditions), figures-of-merit (FoMs) to be measured
at each simulation iteration (i.e. performance against power and
area resources), implicit rules for discarding solutions, and the cost
function to score candidates. In this sense, the EDA environment
proposed in Fig. 1 makes extensive use of the SpiceOpus built-
in optimize command, a Nutmeg extension aimed to manage the
full optimization process described above. Following the design
case of Fig. 10, students have to optimize the CMOS OpAmp
circuit of Fig. 12 for the first stage of our SC ∆ΣM according
to the specifications and load conditions collected from Section IV.
The proposed OpAmp topology has been deeply studied [11], thus
programming the optimize scripting is straightforward, as illustrated
in Fig. 13. An example of optimization results can be seen in Fig. 14.

Figure 12. Single-ended two-stage Miller-compensated CMOS OpAmp
schematic in gschem to be used for the SC ∆ΣM topology of Fig. 10.

opamp_optimize.sp3

optimize
parameter 0 @m1:xopamp[w] low 6u high 120u initial 32u

" parameter 1 @m6:xopamp[m] low 1 high 10 initial 8
" parameter 3 @ccomp:xopamp[w] low 25u high 250u
...
" analysis 25 ac dec 50 10 10e6
" analysis 26 let gmag=20*log10(mag(v(vout)))
" analysis 27 let gph=phase(v(vout))
" analysis 28 cursor c right gmag 0
" analysis 29 let gbw=abs(frequency[%c])/1e6
" analysis 30 let pm=180+gph[%c]
...
" analysis 46 tran 1n 5u
" analysis 47 cursor c right vout 2.1
" analysis 48 let t1=time[%c]
" analysis 49 cursor c right vout 2.9
" analysis 50 let t2=time[%c]
" analysis 51 let srpos=0.8/(t2-t1)*1e-6
...
" implicit 0 op2.pd lt 1.5
" implicit 1 op2.area lt 0.025
" implicit 4 ac2.pm gt 60
" implicit 5 tran2.srpos gt 12
...
" cost 1/tran2.srneg+1/tran2.srpos+abs(60-ac2.pm)
" method genetic elitism yes maxgen 1000

Figure 13. Portion of SpiceOpus optimize script for the automatic optimiza-
tion of the SR and phase margin of the CMOS OpAmp circuit of Fig. 12.



(c)
(d)

(a)
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Figure 14. SpiceOpus results from the optimize script of Fig. 13: FoM
comparison (a), design parameter iteration (b) and performance analysis (c,d).

VI. PCELL-BASED LAYOUT ENTRY

With this step, the VLSI design methodology of Fig. 1 enters into
the physical domain. The proposed EDA environment relays on Glade
for the subsequent design steps. Apart from being a fully featured
layout editor, as easily seen from Fig. 15, the internal Python scripting
of Glade allows to customize most tasks, from verification rules to
automated generation of layout structures. For the later, a complete
set of parameterized cells (PCells) for CNM25 transistors and polySi-
insulator-polySi (PiP) capacitors are developed, as shown in Fig. 16,
so students can learn how to program their own PCells in order to
save time during full-custom layout design while preserving analog
matching properties [12]. As a side effect of PCell-based design,
errors on the subsequent verification steps can be strongly reduced.

layer selection window
(Tools LSW)!library browser

(Tools Library Browser)!

merge (shift+m)

Python console
and message window
(Tools Message Window)! copy (c) move (m)

stretch (s)

ruler (k)
clear rulers (shift+k)
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(shift+c)

command options (F3)

full/partial selection (F4)

selected

non
selectable

non
visiblequerying

object
properties

(q)
create rectangle (r)

create path (p)

Figure 15. Glade IC layout editor.

common_{d,g,s}={0,0,1}common_{d,g,s}={1,1,1} common_{d,g,s}={1,0,1}

Figure 16. CNM25 NMOSFET layout examples from a custom Python PCells
in Glade. In this case, parameters are m=4×2, w=28µm, l=6µm and common
terminal options as indicated.

VII. DESIGN RULE CHECKER

The first physical verification step in Fig. 1 is the design rule
checker (DRC), which ensures VLSI layout is compliant from the
lithographic point of view only. In this sense, Glade includes the user-
friendly interface of Fig. 17 for debugging DRC errors. Furthermore,
since the full set of design rules are defined by Python scripting, like
in the example of Fig. 19, students can learn the real tasks behind
DRC analysis (e.g. derived layers by boolean operations, geometrical
measurements), and the complexity of programming a complete rule
set to ensure full coverage in CMOS technologies.

querying error marker properties (q)Verify!DRC!Run (shift+l)

Verify!DRC!View errors

Report on total DRC
error count

Figure 17. Example of DRC error debugging in Glade.

cnm25drc.py

...
active = geomGetShapes("GASAD", "drawing")
polygate = geomGetShapes("POLY1", "drawing")
polycap = geomGetShapes("POLY0", "drawing")
gate = geomAnd(polygate, active)
cpoly = geomAnd(polygate, polycap)
geomOffGrid(polygate, 0.25, 1, "0.0. Design grid is ...
geomWidth(gate, 3, "4.1.a. Poly1 width inside GASAD >= ...
geomSpace(polygate, 3, diffnet, "4.2. Poly1 spacing...
geomNotch(polygate, 3, "4.2. Poly1 notch >= 3um")
geomExtension(polygate, active, 2.5, "4.4. Poly1 ext...
geomEnclose(polycap, cpoly, 3, "4.6. Poly0 enclosure...
...

Figure 18. Portion of CNM25 DRC rules file for Glade.



VIII. LAYOUT VERSUS SCHEMATIC AND PARASITICS

EXTRACTION

Both layout versus schematic (LVS) and parasitics annotation steps
of Fig. 1 require the extraction of the equivalent electrical circuit
from its layout. Like in the case of DRC, Glade features circuit
extraction driven by Phyton scripting, as shown in Fig. 19. Students
can also browse extraction results directly in the layout editor for
further electrical rule checking (ERC), following Fig. 20. Concerning
LVS, verification is done by the venerable tool Gemini [13], which
is already integrated in Glade. Again, students can debug any circuit
connectivity or device size mismatching between schematic and
layout in the same editor, as depicted in Fig. 21. Finally, Glade can
export SPICE netlists with annotated parasitics from extraction, like
in Fig. 22, for post-layout simulation with SpiceOpus.

cnm25xtr.py

...
geomLabel(polygate, "POLY1", "pin", 1)
geomLabel(polygate, "POLY1", "net", 0)
geomConnect([
[cont, ndiff, pdiff, polygate, polycap, metal1],
[via12, metal1, metal2]... ] )

extractMOS("cnm25modn", ngate, polygate, ndiff, pwell)
extractParasitic3(pdiff, metal2, cmetal2diff, 0,
[metal1, polygate, polycap])

...

Figure 19. Portion of CNM25 extraction rules file for Glade.

querying net properties (q)

Verify!Extract!Run (shift+y)

Report on total extracted
device count and on any 
short circuit error... 

querying device properties (q)

Figure 20. Extraction and ERC browsing in Glade for the OpAmp of Fig. 12.

IX. CONCLUSIONS

A complete EDA framework for teaching mixed-mode full-custom
VLSI design is presented. The proposed freeware environment allows
students to gain hands-on experience on schematic entry, both at
system and circuit levels, HDL system simulation and block spec-
ification, automatic circuit optimization, PCell-based layout, physical
verification, parasitics extraction, post-layout simulation and tape-out.

LVS error markers

LVS results log

Figure 21. LVS error debugging in Glade for the OpAmp of Fig. 12.

opamp_par.sub

.SUBCKT opamp vinn vinp vout vdd vss ibias
MM0 vdd ibias vdd vdd cnm25modp w=1.2e-05 l=6e-06 as=...
MM1 vdd ibias vout vdd cnm25modp w=1.2e-05 l=6e-06 as=...
Cc0 vinter vout cnm25cpoly w=6.42928e-05 l=0.000156207
MM8 vout ibias vdd vdd cnm25modp w=1.2e-05 l=6e-06 as=...
...
CP1 vinter vss C=3.8582e-13
CP2 vout ibias C=3.33692e-15
CP3 vinp vss C=1.85938e-15
CP4 vout vcomm C=2.0918e-15
...
.ENDS

Figure 22. Portion of the SPICE netlist with annotated parasitics generated
by Glade from the OpAmp layout of Fig. 20.

In order to illustrate the usage of this EDA framework, a practical
design case based on a ∆Σ modulator for A/D conversion in a simple
CMOS technology is described step-by-step.
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