
The Gemini Users Guide

Carl Ebeling

Neil McKenzie

Larry McMurchie

Northwest Laboratory for Integrated Systems

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

December 17, 1993

1 Introduction

Gemini is a program for comparing circuit wirelists. Normally it is used to verify circuit

layout by comparing a wirelist extracted from a circuit layout to a speci�cation wirelist

that is assumed to be correct. Gemini is able to determine very quickly whether or not the

two circuits are equivalent. If the circuits are di�erent, then Gemini must work somewhat

harder to determine exactly where the di�erences occur. Gemini will not work well if the

circuits are substantially di�erent, but in most cases layout bugs cause only small changes

in a circuit. In cases where Gemini cannot isolate the errors, names can be used to help out

Gemini.

Although Gemini is used most frequently with MOS circuits, it can be used to compare

any kind of circuit that can be represented by the Gemini input format (See Appendix

A). Gemini accepts the Berkeley/MIT SIM wirelist format that is widely used to represent

MOS circuits. Both the Magic and MEXTRA circuit extractors produce SIM format �les.

Speci�cation circuits in SIM format may be produced using the schematic capture system

WireC which is also distributed by the Laboratory for Integrated Systems.

Gemini does not normally need any naming information to do the circuit comparison, but

names are useful annotation when Gemini reports errors. If the input �le also contains

location information for devices and nets, then Gemini can build a Magic �le that marks

the location of devices and nets in error. The MEXTRA circuit extractor includes both

label and location information in the circuit wirelist.

1

Gemini is written in C and runs under the Unix operating system. For comparing large

circuits we recommend that it run on a computer with virtual memory support and a large

amount of physical memory (16 Mbytes or more).

This user guide is divided into two parts: the mechanics of getting Gemini up and running,

and the theory of operation of the the graph isomorphism algorithm.

2 Getting Gemini Up and Running

2.1 Gemini Distribution

Gemini is distributed by the Laboratory for Integrated Systems at the University of Wash-

ington. Send requests for Gemini source code to Larry McMurchie, larry@cs.washington.edu.

2.2 Building Gemini

Gemini is built by running make in the Gemini source directory. Gemini can be compiled

using either the portable C compiler cc or the Gnu C compiler gcc. The make �le that

is supplied with the Gemini source �les uses cc by default. Compiling with gcc can be

accomplished by typing

make CC=gcc

The optimizer
ag -Odigit may be used in gcc versions 2.1 and later. Example:

make CC='gcc -O3'

It may be necessary to include the preprocessor
ags -DNOLABS

1

and/or -DNO RANDOM

2

to

compile Gemini successfully. Example:

make CC='gcc -DNOLABS -DNO_RANDOM'

Much attention has been paid to portability, to allow Gemini to be built using both ANSI

and non-ANSI compliant compilers. Please keep us informed on compiler problems you

encounter. Send bug reports to mckenzie@cs.washington.edu.

1

labs() is the absolute value function that returns a long integer. Abs() and labs() are interchangeable

if the size of the default integer is the same as the size of a long integer. On many machines both are four

bytes.

2

Include this
ag if and only if random() is not supported by your run-time system. Note that rand()

and random() are not interchangeable! See the comments in the source �le gemini.h.

2

2.3 Command Line Syntax

Gemini takes two �les in SIM format as its input. The two �le names are speci�ed on the

Unix command line:

% gemini file1.sim file2.sim

There are also a variety of options that can be speci�ed on the command line. See the Unix

man page entry for Gemini for a complete explanation. Here is a brief summary of the

command line options. This information is available on-line by the command gemini -h.

% gemini -h

Gemini 2.7 1993/12/16

gemini {-[CFGIcfhmotvz]} {-[DEM]filename} {-[enpswy]number} file1 file2

-C : Collapse like sized devices (-w is implied)

-F : Do not collapse fingered transistors

-G : Use Gemini file format instead of SIM format

-I : Interactive mode

-c : Do not collapse transistor chains

-cw: Print warnings for out-of-order chains

-f : Case-fold net names (ABC==abc)

-h : Help: print this usage summary

-m : Do not use local matching

-o : Do not optimize labeling procedure

-t : Trace execution

-v : Verbose output

-z : Print nets with zero connections

-D<filename> : Output file of name equivalences

-E<filename> : Input file of name equivalences

-M<filename> : Output Magic file with error tiles at mismatched device locations

-e<number> : Set error limit

-n<number> : Set net size limit when printing connections

-p<number> : Set no-progress limit

-s<number> : Set suspect-node limit

-w<number> : Compare transistor sizes using number as tolerance percentage

-y<number> : Compare capacitance using number as tolerance percentage

2.4 SIM �le syntax

The SIM �le syntax is MOS-speci�c. SIM �les have no hierarchy; they are simply a list of

devices, capacitors and connections. Normally, designers create circuits using a hierarchical

tool such as WireC that generates SIM �le output as a post-process. Gemini uses only a

subset of full SIM �le syntax. The SIM �le entities recognized by Gemini are:

3

� Unit scale and SIM �le format type

This line appears as the �rst line in the �le with the syntax:

| units: scale tech: tech format: fmt

Scale is an integer scale factor that is used with the -w option. Transistor lengths and

widths in this �le are multiplied by this factor and the result is in centimicrons. Tech

is ignored. Fmt selects a format type from the set fMIT, UCB, LBLg. The format

type is required if the -w option is selected. If no format type is speci�ed, no property

information is assumed on the transistor lines. If the entire line is absent then MIT

format is assumed. Either UCB or LBL format is required if the -M option is selected.

� Transistors

Transistors are of two types in CMOS: n and p. For backwards compatibility with

NMOS, Gemini also accepts e as a synonym for n and d as a synonym for p. Transistor

lines appear anywhere in the �le. The syntax is:

n gate source drain fsubstrateg length width x y

p gate source drain fsubstrateg length width x y

The arguments gate, source and drain are required. The argument substrate

3

is re-

quired if and only if the LBL format type was selected (see previous paragraph). These

arguments name the nets (wires) in the circuit. Net names are a non-zero-length

string of printable ASCII characters. Tab and space separate arguments. Numbers

are neither truncated nor converted: net names 131 and 0131 are distinct. The other

arguments are all integers denoting distance in centimicrons and are scaled by the unit

scale factor. The arguments length and width are required if the -w option is selected;

the arguments length, width, x and y are required if the -M option is selected (see the

previous paragraph on unit scale). Total line length must be less than 4K bytes

4

.

� User-de�ned device types

Beginning with version 2.5, Gemini allows custom devices to be de�ned and instanti-

ated in the SIM �le. User-de�ned devices require a device de�nition with the syntax:

DEFINE usertype param1 fparam2 ... paramng

Usertypemust contain two or more alphanumeric characters. Param1 through paramn

denote the formal parameter list. Each parameter denotes a terminal in an instance of

the device type. Parameter identi�ers are used to denote terminal classes and can be

repeated in this declaration to indicate membership in the same class. For example,

the inputs of a generic two-input NAND gate are symmetric and should be treated

3

Implementation note: internally, all MOS transistors are represented using four terminals. If the LBL

format type is not speci�ed, all substrate contacts are connected to the pseudo-net `No connect'.

4

Although schematic capture tools such as WireC sometimes generate very long names as a result of

attening the hierarchy, we believe that the 4K bu�er is su�cient for even very deeply nested circuit

descriptions.

4

equivalently by Gemini's matching algorithm. The corresponding user-de�ned type

may be declared: \DEFINE nand in in out".

Device de�nitions may appear anywhere in the �le and may appear more than once

as long as they are consistent. All device de�nitions must be present in the �rst input

�le, and are optional in the second input �le. If Gemini detects a syntax error, it

prints the line number where the error was detected and then aborts.

Device instances are declared by:

usertype arg1 farg2 ... argng ; attribute-list

Arg1 through argn are the names of nets in the circuit that are bound to the respective

terminal classes in the corresponding device de�nition. The number of arguments

in the instance must match the number of formal parameters in the de�nition. A

semicolon may appear after the last argument and must be separated by whitespace

from the last argument. A device attribute list may appear after the semicolon. In

the current version of Gemini, the attribute list is simply ignored, but future versions

of Gemini may be capable of using the attribute list to assist Gemini's matching

algorithm.

� Capacitors

Capacitors are attributes of nets and are always declared relative to GND. By conven-

tion, capacitance is assumed to be in femtofarads. Capacitor lines appear anywhere

in the �le. The syntax is:

C net GND capacitance

� Net aliases

Net aliases appear anywhere in the �le. The e�ect is to connect the two nets net1

and net2 together. The name net1 replaces net2 in all subsequent error information.

Syntax:

= net1 net2

Gemini ignores all lines in the SIM �le that start with A, B, R, v and semicolon.

For further information on the SIM �le format, see the Unixman page entry for SIM (section

5, �le formats). For reference, Appendix A has a description of the (obsolete) Gemini �le

format.

5

2.5 Examples of Running Gemini

2.5.1 Isomorphic circuits

Here is a CMOS circuit and its SIM equivalent:

a
b

c
d

e

f

| units: 100 tech: cmos-s format: UCB

= GND Gnd

= Vdd VDD

= GND gnd

= Vdd vdd

p a Vdd /cnor_0/_CNOR1_0 2 3 0 0

p b /cnor_0/_CNOR1_0 _CIRCUIT12_1 2 3 0 0

e a GND _CIRCUIT12_1 2 3 0 0

e b _CIRCUIT12_1 GND 2 3 0 0

p _CIRCUIT12_1 Vdd /cnor3_1/_CNOR31_0 2 10 0 0

p _CIRCUIT13_2 /cnor3_1/_CNOR31_0 /cnor3_1/_CNOR32_1 2 3 0 0

p _CIRCUIT11_0 /cnor3_1/_CNOR32_1 f 2 3 0 0

e _CIRCUIT12_1 f GND 2 3 0 0

e _CIRCUIT11_0 f GND 2 3 0 0

e _CIRCUIT13_2 f GND 2 3 0 0

p d Vdd _CIRCUIT13_2 2 3 0 0

p c _CIRCUIT13_2 Vdd 2 3 0 0

e d _CIRCUIT13_2 /cnand_2/_CNAND1_0 2 3 0 0

e c /cnand_2/_CNAND1_0 GND 2 3 0 0

p e Vdd _CIRCUIT11_0 2 3 0 0

e e _CIRCUIT11_0 GND 2 3 0 0

6

Here is a second CMOS circuit and its SIM equivalent:

v

u

y

Vdd
x

w

zVdd

GND

| units: 100 tech: cmos-s format: UCB

= GND Gnd

= Vdd VDD

= GND gnd

= Vdd vdd

p v Vdd _CIRCUIT22_1 2 3 0 0

p u Vdd _CIRCUIT22_1 2 3 0 0

p y Vdd _CIRCUIT23_2 2 3 0 0

e v _CIRCUIT22_1 _CIRCUIT27_6 2 3 0 0

e y _CIRCUIT23_2 GND 2 3 0 0

e u _CIRCUIT27_6 GND 2 3 0 0

p _CIRCUIT21_0 Vdd _CIRCUIT24_3 2 20 0 0

p _CIRCUIT22_1 _CIRCUIT24_3 _CIRCUIT26_5 2 3 0 0

p x Vdd _CIRCUIT25_4 2 3 0 0

p w _CIRCUIT25_4 _CIRCUIT21_0 2 3 0 0

p _CIRCUIT23_2 _CIRCUIT26_5 z 2 3 0 0

e _CIRCUIT22_1 GND z 2 3 0 0

e w _CIRCUIT21_0 GND 2 3 0 0

e x GND _CIRCUIT21_0 2 3 0 0

e _CIRCUIT21_0 GND z 2 3 0 0

e _CIRCUIT23_2 z GND 2 3 0 0

Gemini veri�es that the two circuits are isomorphic:

7

% gemini circuit1.sim circuit2.sim

Graph "circuit1.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

Graph "circuit2.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

These circuits contain some symmetry (34% nodes not yet matched).

Gemini will attempt to find a valid match for symmetrical nodes.

####

12 (52%) matches were found by local matching

All nodes were matched in 7 passes

For every thousand nodes matched, Gemini prints the number. Special characters indicate

the relative amount of di�culty Gemini is having in resolving symmetrical circuits. x

indicates that an extra relabeling step was needed. # indicates that Gemini was forced to

guess a match. M indicates a match made by comparing string su�xes.

Gemini is able to compensate for permutations of inputs to NAND and NOR logic gates by

collapsing chains of same-type transistors linked by source-drain connections. Chains are

processed when the �les are read into Gemini, before any matching takes place. The chain

is lumped into a single device with one source, one drain and multiple gates. In the example

above, both circuits have 16 transistors and three chains: a chain of two n transistors, a

chain of two p transistors and a chain of three p transistors. These seven transistors are

replaced by three lumped devices, which accounts for Gemini reporting 12 devices instead

of 16 when the �le is read into memory. Chain collapsing can be disabled using the -c

option. Example:

% gemini -c circuit1.sim circuit2.sim

Graph "circuit1.sim":

Units = 100.000000

Number of devices: 16

Number of nets: 15

Graph "circuit2.sim":

Units = 100.000000

Number of devices: 16

Number of nets: 15

24 (77%) matches were found by local matching

All nodes were matched in 6 passes

Gemini may report chains as out-of-order when there is in fact a possible in-order matching.

The -E option can be used to force a set of matches and change Gemini's conclusion about

8

the two circuits. For instance we can bind d in the �rst circuit to u in the second in

the equivalence �le equiv. This will lead Gemini to believe that the circuits match with

out-of-order chains.

% more equiv

= d u

% gemini circuit1.sim circuit2.sim -Eequiv

Graph "circuit1.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

Graph "circuit2.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

These circuits contain some symmetry (17% nodes not yet matched).

Gemini will attempt to find a valid match for symmetrical nodes.

##

A total of 4 transistor chains were out of order

20 (86%) matches were found by local matching

All nodes were matched in 11 passes

Using an equivalence �le may be necessary to match highly symmetrical circuits. False neg-

atives may occur: incorrect information may cause Gemini to conclude that the circuits are

di�erent when they are actually isomorphic. However, false positives should be impossible.

A dictionary �le, which is the set of net name equivalences deduced, can be created using

-Ddict�le. The dictionary �le may be generated by one run and used as the equivalence �le

on a later run.

2.5.2 Properties and Warnings

Gemini allows secondary information, called properties, to be associated with devices or

nets and these can be checked when nodes are matched. Examples are the actual size of a

transistor and the capacitance of a net. This information is technology dependent and thus

must be checked specially for di�erent types of circuits. At present, only CMOS is handled.

The device properties for CMOS are the device width and length and the device location.

The net property is the capacitance of the net with respect to ground. Since nets are not

explicit in SIM format �les, there is no location information for them. If the -w
ag is

speci�ed, then Gemini checks the properties of devices that are found to match. If -y is

selected, the properties of nets are checked. For CMOS, the width and length of the devices

must agree to within 10% or a warning message is printed. The location information is

9

used in connection with the -M
ag. For each device that cannot be matched, a 400 x 400

rectangle is placed in the Magic output �le at the location of the device.

If device properties are mismatched, Gemini prints out the names of the matching nets and

the corresponding property information in a columnar format. Names that are wider than

the columns are truncated. Here is an example based on the same SIM �les:

% gemini -w circuit1.sim circuit2.sim

Graph "circuit1.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

Graph "circuit2.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

These circuits contain some symmetry (34% nodes not yet matched).

Gemini will attempt to find a valid match for symmetrical nodes.

####

The following transistors do not match in size:

circuit1.sim : circuit2.sim

(1) Device type p:

s,d: Vdd f : Vdd z

g: _CIRCUIT12_1 l/w: 200/ 1000 : _CIRCUIT21_0 l/w: 200/ 2000

g: _CIRCUIT13_2 l/w: 200/ 300 : _CIRCUIT22_1 l/w: 200/ 300

g: _CIRCUIT11_0 l/w: 200/ 300 : _CIRCUIT23_2 l/w: 200/ 300

12 (52%) matches were found by local matching

All nodes were matched in 7 passes

2.5.3 Graphs that are not isomorphic

Here we show what Gemini prints when it discovers that the graphs are not isomorphic. To

demonstrate, we changed one of the p transistors into a e transistor and called the new �le

circuit1bad.sim.

Gemini now �nds that the two circuit graphs are di�erent. Mismatched devices are indicated

by printing the device type and all nets that connect to the device. Mismatched nets are

indicated by printing all nets of all devices that connect to the net. Because the output

from reporting mismatched nets can be verbose, Gemini prints nothing if the number of

devices is greater than 10. This limit can be changed using the -n command line option (see

section 2.3). For brevity the example sets this limit to 4. The transistor gates are denoted

by [g] and the source/drain pair by [s,d].

10

% gemini circuit1.sim circuit1bad.sim -n 4

Graph "circuit1.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

Graph "circuit1bad.sim":

Units = 100.000000

Number of devices: 12

Number of nets: 11

The circuits are different.

These circuits contain some symmetry (43% nodes not yet matched).

Gemini will attempt to find a valid match for symmetrical nodes.

M##

8 (34%) matches were found by local matching

Graph number 1: circuit1.sim

2 NETS definitely do not match:

NET "Vdd" 5 connections

NET "_CIRCUIT13_2" 5 connections

2 NETS could not be matched, possibly because of other unmatched nets:

NET "c" 2 connections

n: [g] d, c :: [s,d] _CIRCUIT13_2, GND

p: [g] c :: [s,d] _CIRCUIT13_2, Vdd

NET "d" 2 connections

n: [g] d, c :: [s,d] _CIRCUIT13_2, GND

p: [g] d :: [s,d] Vdd, _CIRCUIT13_2

2 DEVICES could not be matched, possibly because of other unmatched devices:

DEVICE p: connections: [g] c :: [s,d] _CIRCUIT13_2, Vdd

DEVICE p: connections: [g] d :: [s,d] Vdd, _CIRCUIT13_2

Graph number 2: circuit1bad.sim

4 NETS definitely do not match:

NET "Vdd" 5 connections

NET "_CIRCUIT13_2" 5 connections

NET "c" 2 connections

n: [g] d, c :: [s,d] _CIRCUIT13_2, GND

n: [g] c :: [s,d] _CIRCUIT13_2, Vdd

NET "d" 2 connections

n: [g] d, c :: [s,d] _CIRCUIT13_2, GND

p: [g] d :: [s,d] Vdd, _CIRCUIT13_2

2 DEVICES definitely do not match:

DEVICE p: connections: [g] d :: [s,d] Vdd, _CIRCUIT13_2

DEVICE n: connections: [g] c :: [s,d] _CIRCUIT13_2, Vdd

11

3 Theory of Operation

Here we give a synopsis of the graph isomorphism algorithm. See [Ebel88] for further

discussion of the algorithm. See also [EZ83] and [Fitz81].

3.1 Labeling and partitioning

Gemini compares circuits using a graph isomorphism algorithm that works well for circuit

graphs. This algorithm partitions graphs using vertex invariants and then iteratively re�nes

the partitioning until all partitions consist of a single node. Since the partitions in the two

graphs must correspond, the nodes between the two graphs can be matched.

Gemini partitions the graphs by labeling the nodes: nodes with the same label are in the

same partition. The two graphs being compared are labeled in parallel and if the graphs

are equivalent, then the number of partitions and their size and labels must be the same.

Each time the graphs are relabeled, the partitions in the two graphs are sorted by label and

matched. Nodes are matched when singleton partitions are created.

The initial label for nodes is the device type for devices and the number of connections for

nets. Each subsequent label is a function of the previous label and the labels of neighboring

nodes. The terminal classes are used by the labeling function to distinguish neighbors

connected through non-equivalent terminals. Each time the graphs are relabeled, some

nodes will usually have unique labels, that is, that they are members of singleton partitions.

Using the heuristic that neighbors of uniquely labeled nodes are the most likely to be labeled

uniquely next, Gemini uses a local matching algorithm. It tries to deduce matches using

strictly local information and avoids the expensive relabeling step. If there are no frontier

nodes, then all nodes are relabeled. The -m
ag disables the local matching feature. The

-o
ag can be used to cause all nodes to be relabeled on every pass. Since circuit graphs

are bipartite with nets and devices forming the two parts, labeling alternates between nets

and devices.

If two circuit graphs are equivalent, the labeling process very quickly labels each node

uniquely. If there are di�erences, however, this algorithm �nds out that the graphs are

di�erent but does not do well �nding the di�erences. This happens because nodes that

are labeled di�erently as a result of di�erences between the graphs a�ect the labels of

neighboring nodes. A small discrepancy may cause many nodes to be labeled di�erently

after only a few passes. (If the node happens to be Vdd, GND or a clock signal, then almost

all devices will have di�erent labels in the next pass.) Gemini deals with this problem by

removing nodes that may have wrong labels from the labeling process. These nodes are

marked so that they will not be included when labels are calculated for neighboring nodes.

Gemini detects these suspect nodes when it compares the partitions in the two graphs after

each relabeling. All the nodes in partitions that do not correspond are marked suspect.

12

Labeling continues normally for the other nodes, but if there are too many suspect nodes,

then there may not be su�cient labeling information for these nodes to be labeled uniquely.

For su�ciently small di�erences, however, some progress in the labeling process can be

made. When no more progress is detected, then the suspect nodes are `redeemed' and

the labeling starts over again. If there is still no progress, Gemini must give up and all

remaining unmatched nodes are printed as error nodes.

Progress is measured as the number of unique nodes created in each pass. The number of

passes that are made with no progress before Gemini gives up can be set by the -p
ag

which is 2 by default. The number of passes without progress that suspects are 'redeemed'

can be set by the -s
ag which is 1 by default. Changing these parameters will a�ect how

quickly and how well Gemini will pinpoint di�erences between di�ering circuits, but the

default values usually work pretty well. The -t
ag can be used to trace the progress of

the labeling.

3.2 Ambiguous Circuit Graphs

If Gemini ceases making progress in labeling the graphs before all nodes have been labeled

uniquely, it is either because the graphs are ambiguous or because they are di�erent enough

that there is not enough information to label all nodes properly as described in the previous

section. Gemini handles this situation by making an educated guess as to which of the

remaining nodes in the two graphs match. One pair of nodes is arbitrarily picked and

labeled with a new value, in e�ect placing them in a new singleton partition. If Gemini is

run in interactive mode, then the user is asked to con�rm Gemini's guess. If the guess is

not con�rmed, Gemini will make another guess. (If the user answers with `!', Gemini will

not ask for further con�rmation). Labeling then continues and other nodes can usually be

distinguished based on this arbitrary matching. If the graphs are equivalent and the labeling

has produced an automorphism partitioning (meaning that all partitions contain equivalent

nodes), then this procedure will always match equivalent nodes and the subsequent labeling

will �nd the graphs equivalent (subject to other disambiguating matches). In some rare

cases, however, Gemini's educated guess will be wrong, and Gemini will think that the

circuits are di�erent even though they are not. Gemini informs the user when this happens

and the only recourse is for the user to give more information about the circuits by matching

labels in the two circuits using the -E
ag.

When graphs are di�erent, Gemini will often end up with ambiguous partitions and be

forced to make a guess at a pair of nodes that match. Eventually Gemini will either make

the wrong guess or �nd no candidates that can be matched and all the remaining nodes

that have not been matched between the two graphs will be printed. If the two circuits

are su�ciently di�erent, this set of nodes may contain nodes that are not really di�erent

between the two graphs, but usually they will give a good indication of where the problem

is.

13

Although Gemini does not use names when comparing graphs (and does not do much better

with them if the graphs are equivalent), names can be quite useful when the graphs are

di�erent enough that Gemini has problems identifying the source of error. The user can tell

Gemini which nodes in the two circuits must match by entering their names in an equivalence

�le. This can be used to good e�ect to reduce the number of nodes in ambiguous partitions.

Good examples of nodes that should be named are the inputs and outputs of bit slices that

are similar and clock or control signals. Care must be taken however. Consider the case

where the outputs of a PLA have all been grounded (an actual case history from our �les).

Matching the ground nets for example causes every transistor in the OR plane of the PLA

to be mislabeled and the resulting error report from Gemini will not be very elucidating.

But leaving the grounds unmatched allows Gemini to throw away some information (the

ground net) and still have enough to match all nodes except the PLA outputs, which are

exactly the nodes in error.

References

[Fitz81] D. Fitzpatrick. Circuit Analysis from CIF Layouts. University of California,

Berkeley, 1981.

[EZ83] C. Ebeling and O. Zajicek. Validating VLSI Circuit Layout by Wirelist Com-

parison. Proceedings of ICCAD 1983, pp. 172-173.

[Ebel88] C. Ebeling. GeminiII: A Second Generation Layout Validation Program. Pro-

ceedings of ICCAD 1988, pp. 322-325.

14

A Gemini Input Format

The Gemini input format is a simple but general wirelist syntax that can be used to represent

almost any type of circuit. A circuit consists of devices of various types whose terminals

(connection points) are connected by nets. A wirelist �le simply lists the device types,

devices and nets appearing in the circuit. Each type, device and net may be named but

these names are usually used only for annotating the output listing. If there is no name for

a node, then *" is used by convention. Individual types, devices and nets are referenced

by index (zero-based) according their position in each list.

The Gemini �le syntax is:

<number-of-types>

<type-0-name> <number-of-terminals> <terminal-class-0> ... <terminal-cl

...

<type-n-name> <number-of-terminals> <terminal-class-0> ... <terminal-cl

<number-of-devices> <number-of-nets>

<device-0-name> <type> <net> ... <net> <properties>

...

<device-n-name> <type> <net> ... <net> <properties>

<net-0-name> <number-connects> <device>,<terminal> ... <device>,<termin

...

<net-n-name> <number-connects> <device>,<terminal> ... <device>,<termin

An example �le appears at the end of this section.

The �rst part lists all the device types used in the circuit. Devices are the same type

if and only if they are functionally equivalent and have the same number of terminals

(connections). For example, a 2 input AND gate is di�erent from a 2 input OR gate or

a 3 input AND gate. The terminal classes are (arbitrary) numbers used to group device

terminals that are equivalent. For example, an AND gate has two input terminals in one

class (since these connections can be interchanged) and an output terminal in another class.

NMOS circuits have only two device types: enhancement and depletion mode transistors.

CMOS circuits have only two device types: n and p transistors.

Second is the list of circuit devices. Following the device name is the device's type index

and a list of terminal connections in the same order as the terminals are given in the type

entry. Each connection is given by the index of the net to which the terminal is connected.

The remainder of the line is taken as the property string. This is an arbitrary string that

15

further describes the device but does not a�ect its type. The property string is technology

dependent in general and can be used only if the particular technology is understood by

Gemini. NMOS and CMOS are the only technologies speci�cally recognized. The property

string contains the transistor length and width for devices.

Last comes the list of circuit nets. After the net name is the number of connections to the

net followed by the list of connections. Each connection consists of a pair of numbers: the

index of the device in the device list and the terminal number of the device. Following the

connection list is the property string. For CMOS and NMOS technologies, this string is

empty.

A complete �le for a single NOR gate in NMOS technology is shown below by way of

example.

2

dep 3 0 1 1

enh 3 0 1 1

3 5

* 0 0 0 1 8.0 2.0

* 1 2 3 0 2.0 2.0

* 1 4 3 0 2.0 2.0

c 4 2,2 1,2 0,1 0,0

vdd 1 0,2

a 1 1,0

gnd 2 2,1 1,1

b 1 2,0

This �le is equivalent to the following SIM �le:

d c c vdd 8.00 2.00 r 0 0 16.00

e a gnd c 2.00 2.00 r 0 0 4.00

e b gnd c 2.00 2.00 r 0 0 4.00

16

