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1 Introduction

Gemini is a program for comparing circuit wirelists. Normally it is used to verify circuit
layout by comparing a wirelist extracted from a circuit layout to a specification wirelist
that is assumed to be correct. Gemini is able to determine very quickly whether or not the
two circuits are equivalent. If the circuits are different, then Gemini must work somewhat
harder to determine exactly where the differences occur. Gemini will not work well if the
circuits are substantially different, but in most cases layout bugs cause only small changes
in a circuit. In cases where Gemini cannot isolate the errors, names can be used to help out
Gemini.

Although Gemini is used most frequently with MOS circuits, it can be used to compare
any kind of circuit that can be represented by the Gemini input format (See Appendix
A). Gemini accepts the Berkeley/MIT SIM wirelist format that is widely used to represent
MOS circuits. Both the Magic and MEXTRA circuit extractors produce SIM format files.
Specification circuits in SIM format may be produced using the schematic capture system
WireC which is also distributed by the Laboratory for Integrated Systems.

Gemini does not normally need any naming information to do the circuit comparison, but
names are useful annotation when Gemini reports errors. If the input file also contains
location information for devices and nets, then Gemini can build a Magic file that marks
the location of devices and nets in error. The MEXTRA circuit extractor includes both
label and location information in the circuit wirelist.



Gemini is written in C and runs under the Unix operating system. For comparing large
circuits we recommend that it Tun on a computer with virtual memory support and a large
amount of physical memory (16 Mbytes or more).

This user guide is divided into two parts: the mechanics of getting Gemini up and running,
and the theory of operation of the the graph isomorphism algorithm.

2 Getting Gemini Up and Running

2.1 Gemini Distribution

Gemini is distributed by the Laboratory for Integrated Systems at the University of Wash-
ington. Send requests for Gemini source code to Larry McMurchie, larry@cs.washington.edu.

2.2 Building Gemini

Gemini is built by running make in the Gemini source directory. Gemini can be compiled
using either the portable C compiler cc or the Gnu C compiler gcc. The make file that
is supplied with the Gemini source files uses cc by default. Compiling with gcc can be
accomplished by typing

make CC=gcc
The optimizer flag -0digit may be used in gcc versions 2.1 and later. Example:

make CC=’gcc -03’

It may be necessary to include the preprocessor flags ~-DNOLABS' and/or -DNO_RANDOM? to
compile Gemini successfully. Example:

make CC=’gcc -DNOLABS -DNO_RANDOM’

Much attention has been paid to portability, to allow Gemini to be built using both ANSI
and non-ANSI compliant compilers. Please keep us informed on compiler problems you
encounter. Send bug reports to mckenzie@cs.washington.edu.

'1abs () is the absolute value function that returns a long integer. Abs() and labs() are interchangeable
if the size of the default integer is the same as the size of a long integer. On many machines both are four
bytes.

?Include this flag if and only if random() is not supported by your run-time system. Note that rand()
and random() are not interchangeable! See the comments in the source file gemini.h.



2.3 Command Line Syntax

Gemini takes two files in SIM format as its input. The two file names are specified on the
Unix command line:

% gemini filel.sim file2.sim

There are also a variety of options that can be specified on the command line. See the Unix
man page entry for Gemini for a complete explanation. Here is a brief summary of the
command line options. This information is available on-line by the command gemini -h.

% gemini -h

Gemini 2.7 1993/12/16

gemlnl {-[CFGIcfhmotvz]} {-[DEM]filename} {-[enpswylnumber} filel file2
-C : Collapse like sized devices (-w is implied)

-F : Do not collapse fingered transistors

-G : Use Gemini file format instead of SIM format

-I : Interactive mode

-c : Do not collapse transistor chains

-cw: Print warnings for out-of-order chains

-f : Case-fold net names (ABC==abc)

-h : Help: print this usage summary

-m : Do not use local matching

-0 : Do not optimize labeling procedure

-t : Trace execution

-v : Verbose output

-z : Print nets with zero connections

—D<f11ename> : Output file of name equivalences

-E<filename> : Input file of name equivalences

-M<filename> : Output Magic file with error tiles at mismatched device locations
—e<number> : Set error limit

-n<number> : Set net size limit when printing connections

-p<number> : Set no-progress limit

-s<number> : Set suspect-node limit

-w<number> : Compare transistor sizes using number as tolerance percentage
-y<number> : Compare capacitance using number as tolerance percentage

2.4 SIM file syntax

The SIM file syntax is MOS-specific. SIM files have no hierarchy; they are simply a list of
devices, capacitors and connections. Normally, designers create circuits using a hierarchical
tool such as WireC that generates SIM file output as a post-process. Gemini uses only a
subset of full SIM file syntax. The SIM file entities recognized by Gemini are:



e Unit scale and SIM file format type
This line appears as the first line in the file with the syntax:
| units: scale tech: tech format: fmt

Scale is an integer scale factor that is used with the -w option. Transistor lengths and
widths in this file are multiplied by this factor and the result is in centimicrons. Tech
is ignored. F'mt selects a format type from the set {MIT, UCB, LBL}. The format
type is required if the -w option is selected. If no format type is specified, no property
information is assumed on the transistor lines. If the entire line is absent then MIT
format is assumed. Either UCB or LBL format is required if the -M option is selected.

e Transistors

Transistors are of two types in CMOS: n and p. For backwards compatibility with
NMOS, Gemini also accepts e as a synonym for n and d as a synonym for p. Transistor
lines appear anywhere in the file. The syntax is:

n gate source drain {substrate} length width z y
p gate source drain {substrate} length width z y

The arguments gate, source and drain are required. The argument substrate® is re-
quired if and only if the LBL format type was selected (see previous paragraph). These
arguments name the nets (wires) in the circuit. Net names are a non-zero-length
string of printable ASCII characters. Tab and space separate arguments. Numbers
are neither truncated nor converted: net names 131 and 0131 are distinct. The other
arguments are all integers denoting distance in centimicrons and are scaled by the unit
scale factor. The arguments length and width are required if the -w option is selected;
the arguments length, width, x and y are required if the -M option is selected (see the
previous paragraph on unit scale). Total line length must be less than 4K bytes®.

o User-defined device types

Beginning with version 2.5, Gemini allows custom devices to be defined and instanti-
ated in the SIM file. User-defined devices require a device definition with the syntax:

DEFINE usertype paraml {param?2 ... paramn}

Usertype must contain two or more alphanumeric characters. Paraml through paramn
denote the formal parameter list. Each parameter denotes a terminal in an instance of
the device type. Parameter identifiers are used to denote terminal classes and can be
repeated in this declaration to indicate membership in the same class. For example,
the inputs of a generic two-input NAND gate are symmetric and should be treated

*Implementation note: internally, all MOS transistors are represented using four terminals. If the LBL
format type is not specified, all substrate contacts are connected to the pseudo-net ‘No connect’.

* Although schematic capture tools such as WireC sometimes generate very long names as a result of
flattening the hierarchy, we believe that the 4K buffer is sufficient for even very deeply nested circuit
descriptions.



equivalently by Gemini’s matching algorithm. The corresponding user-defined type
may be declared: “DEFINE nand in in out”.

Device definitions may appear anywhere in the file and may appear more than once
as long as they are consistent. All device definitions must be present in the first input
file, and are optional in the second input file. If Gemini detects a syntax error, it
prints the line number where the error was detected and then aborts.

Device instances are declared by:
usertype argl {arg? ... argn} ; attribute-list

Argl through argn are the names of nets in the circuit that are bound to the respective
terminal classes in the corresponding device definition. The number of arguments
in the instance must match the number of formal parameters in the definition. A
semicolon may appear after the last argument and must be separated by whitespace
from the last argument. A device attribute list may appear after the semicolon. In
the current version of Gemini, the attribute list is simply ignored, but future versions
of Gemini may be capable of using the attribute list to assist Gemini’s matching
algorithm.

e Capacitors

Capacitors are attributes of nets and are always declared relative to GND. By conven-
tion, capacitance is assumed to be in femtofarads. Capacitor lines appear anywhere
in the file. The syntax is:

C net GND capacitance

o Net aliases

Net aliases appear anywhere in the file. The effect is to connect the two nets net1
and net2 together. The name net! replaces net2 in all subsequent error information.
Syntax:

= netl net?

Gemini ignores all lines in the SIM file that start with A, B, R, v and semicolon.

For further information on the SIM file format, see the Unix man page entry for SIM (section
5, file formats). For reference, Appendix A has a description of the (obsolete) Gemini file
format.



2.5 Examples of Running Gemini
2.5.1 Isomorphic circuits

Here is a CMOS circuit and its SIM equivalent:

| units: 100 tech: cmos-s format: UCB

= GND Gnd

= Vdd VDD

= GND gnd

vdd vdd

a Vdd /cnor_0/_CNOR1_0 2 3 0 O

b /cnor_0/_CNOR1_0 _CIRCUIT12_1 2 3 0 0

a GND _CIRCUIT12_1 2 3 0 O

b _CIRCUIT12_1 GND 2 3 0 0

_CIRCUIT12_1 Vdd /cnor3_1/_CNOR31_0 2 10 0 O

_CIRCUIT13_2 /cnor3_1/_CNOR31_0 /cnor3_1/_CNOR32_1 2 3 0 0
_CIRCUIT11_0 /cnor3_1/_CNOR32_1 f 2 3 0 0

_CIRCUIT12_1 £ GND 2 3 0 O

_CIRCUIT11_0 f GND 2 3
CIRCUIT13_2 f GND 2 3
Vdd _CIRCUIT13_2 2 3
_CIRCUIT13_2 Vdd 2 3
_CIRCUIT13_2 /cnand_2/_CNAND1_0 2 3 0 0O
/cnand_2/_CNAND1_0 GND 2 3 0 O

Vdd _CIRCUIT11_0 2 3 00

_CIRCUIT11_O0 GND 2 3 0 0

o'” o ot o 0 ©'COT 0 0T T
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Here is a second CMOS circuit and its SIM equivalent:
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| units: 100 tech: cmos-s format: UCB

= GND Gnd

= Vdd VDD

= GND gnd

vdd vdd

Vdd _CIRCUIT22_1 2 3 00

Vdd _CIRCUIT22_1 2 3 00

Vdd _CIRCUIT23_2 2 3 00

_CIRCUIT22_1 _CIRCUIT27_6 2 3 0 0
_CIRCUIT23_2 GND 2 3 0 0

_CIRCUIT27_6 GND 2 3 0 0

_CIRCUIT21_0 Vdd _CIRCUIT24_3 2 20 0 O
_CIRCUIT22_1 _CIRCUIT24_3 _CIRCUIT26_52 3 0 0
x Vdd _CIRCUIT25_4 2 3 0 0

w _CIRCUIT25_4 _CIRCUIT21_0 2 3 0 0
_CIRCUIT23_2 _CIRCUIT26_5z 2 3 0 0
_CIRCUIT22_1 GND =z 2 3
w _CIRCUIT21_0 GND 2 3
x GND _CIRCUIT21_0 2 3
_CIRCUIT21_0 GND =z 2 3
_CIRCUIT23_2 z GND 2 3

v
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Gemini verifies that the two circuits are isomorphic:



% gemini circuitl.sim circuit2.sim
Graph "circuitl.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11
Graph "circuit2.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11

These circuits contain some symmetry (34} nodes not yet matched).
Gemini will attempt to find a valid match for symmetrical nodes.
#H#t#H#

12 (52%) matches were found by local matching

A11 nodes were matched in 7 passes

For every thousand nodes matched, Gemini prints the number. Special characters indicate
the relative amount of difficulty Gemini is having in resolving symmetrical circuits. x
indicates that an extra relabeling step was needed. # indicates that Gemini was forced to
guess a match. M indicates a match made by comparing string suffixes.

Gemini is able to compensate for permutations of inputs to NAND and NOR logic gates by
collapsing chains of same-type transistors linked by source-drain connections. Chains are
processed when the files are read into Gemini, before any matching takes place. The chain
is lumped into a single device with one source, one drain and multiple gates. In the example
above, both circuits have 16 transistors and three chains: a chain of two n transistors, a
chain of two p transistors and a chain of three p transistors. These seven transistors are
replaced by three lumped devices, which accounts for Gemini reporting 12 devices instead
of 16 when the file is read into memory. Chain collapsing can be disabled using the -c
option. Example:

% gemini -c circuitl.sim circuit2.sim
Graph "circuitl.sim":
Units = 100.000000
Number of devices: 16
Number of nets: 15
Graph "circuit2.sim":
Units = 100.000000
Number of devices: 16
Number of nets: 15

24 (77%) matches were found by local matching
A11 nodes were matched in 6 passes

Gemini may report chains as out-of-order when there is in fact a possible in-order matching.
The -E option can be used to force a set of matches and change Gemini’s conclusion about



the two circuits. TFor instance we can bind d in the first circuit to u in the second in
the equivalence file equiv. This will lead Gemini to believe that the circuits match with
out-of-order chains.

% more equiv
=du
% gemini circuitl.sim circuit2.sim -Eequiv
Graph "circuitl.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11
Graph "circuit2.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11

These circuits contain some symmetry (17% nodes not yet matched).
Gemini will attempt to find a valid match for symmetrical nodes.
##

A total of 4 transistor chains were out of order

20 (86%) matches were found by local matching

A11 nodes were matched in 11 passes

Using an equivalence file may be necessary to match highly symmetrical circuits. False neg-
atives may occur: incorrect information may cause Gemini to conclude that the circuits are
different when they are actually isomorphic. However, false positives should be impossible.

A dictionary file, which is the set of net name equivalences deduced, can be created using
-Ddictfile. The dictionary file may be generated by one run and used as the equivalence file
on a later run.

2.5.2 Properties and Warnings

Gemini allows secondary information, called properties, to be associated with devices or
nets and these can be checked when nodes are matched. Examples are the actual size of a
transistor and the capacitance of a net. This information is technology dependent and thus
must be checked specially for different types of circuits. At present, only CMOS is handled.

The device properties for CMOS are the device width and length and the device location.
The net property is the capacitance of the net with respect to ground. Since nets are not
explicit in SIM format files, there is no location information for them. If the -w flag is
specified, then Gemini checks the properties of devices that are found to match. If -y is
selected, the properties of nets are checked. For CMOS, the width and length of the devices
must agree to within 10% or a warning message is printed. The location information is



used in connection with the -M flag. For each device that cannot be matched, a 400 x 400
rectangle is placed in the Magic output file at the location of the device.

If device properties are mismatched, Gemini prints out the names of the matching nets and
the corresponding property information in a columnar format. Names that are wider than
the columns are truncated. Here is an example based on the same SIM files:

% gemini -w circuitl.sim circuit2.sim
Graph "circuitl.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11
Graph "circuit2.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11

These circuits contain some symmetry (34} nodes not yet matched).
Gemini will attempt to find a valid match for symmetrical nodes.
#iHH

The following transistors do not match in size:

circuitl.sim : circuit2.sim
(1) Device type p:
s,d: vdd f: vdd z
g: _CIRCUIT12_1 1/w: 200/ 1000 : _CIRCUIT21_0 1/w: 200/ 2000
g: _CIRCUIT13_2 1/w: 200/ 300 : _CIRCUIT22_1 1/w: 200/ 300
g: _CIRCUIT11_0 1/w: 200/ 300 : _CIRCUIT23_2 1/w: 200/ 300

12 (52%) matches were found by local matching
A11 nodes were matched in 7 passes

2.5.3 Graphs that are not isomorphic

Here we show what Gemini prints when it discovers that the graphs are not isomorphic. To
demonstrate, we changed one of the p transistors into a e transistor and called the new file
circuitlbad.sim.

Gemini now finds that the two circuit graphs are different. Mismatched devices are indicated
by printing the device type and all nets that connect to the device. Mismatched nets are
indicated by printing all nets of all devices that connect to the net. Because the output
from reporting mismatched nets can be verbose, Gemini prints nothing if the number of
devices is greater than 10. This limit can be changed using the -n command line option (see
section 2.3). For brevity the example sets this limit to 4. The transistor gates are denoted
by [g] and the source/drain pair by [s,d].
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% gemini circuitl.sim circuitibad.sim -n 4
Graph "circuitl.sim":
Units = 100.000000
Number of devices: 12
Number of nets: 11
Graph '"circuitlbad.sim'":
Units = 100.000000
Number of devices: 12
Number of nets: 11
The circuits are different.

These circuits contain some symmetry (43% nodes not yet matched).
Gemini will attempt to find a valid match for symmetrical nodes.
M##

8 (34%) matches were found by local matching

Graph number 1: circuitl.sim

2 NETS definitely do not match:
NET "Vdd" ©5 connections
NET "_CIRCUIT13_2" b5 connections
2 NETS could not be matched, possibly because of other unmatched nets:
NET "c¢" 2 connections

n: [gl 4, ¢ :: [s,d] _CIRCUIT13_2, GND

p: [gl ¢ :: [s,d] _CIRCUIT13_2, Vdd
NET '"d" 2 connections

n: [gl 4, ¢ :: [s,d] _CIRCUIT13_2, GND

p: [gl 4 :: [s,d] vdd, _CIRCUIT13_2
2 DEVICES could not be matched, possibly because of other unmatched devices:
DEVICE p: connections: [g] ¢ :: [s,d] _CIRCUIT13_2, Vdd
DEVICE p: connections: [g] 4 :: [s,d] Vvdd, _CIRCUIT13_2

Graph number 2: circuitlbad.sim
4 NETS definitely do not match:
NET "vVdd" b connections
NET "_CIRCUIT13_2" b connections
NET "c" 2 connections
n: [gl 4, ¢ :: [s,d] _CIRCUIT13_2, GND
n: [g]l ¢ :: [s,d] _CIRCUIT13_2, Vdd
NET "d" 2 connections
n: [gl 4, ¢ :: [s,d] _CIRCUIT13_2, GND
p: [gl 4 :: [s,d] vdd, _CIRCUIT13_2

2 DEVICES definitely do not match:

DEVICE p: connections: [g] 4 :: [s,d] Vvdd, _CIRCUIT13_2
DEVICE n: connections: [g] ¢ :: [s,d] _CIRCUIT13_2, Vdd

11



3 Theory of Operation

Here we give a synopsis of the graph isomorphism algorithm. See [Ebel88] for further
discussion of the algorithm. See also [EZ83] and [Fitz81].

3.1 Labeling and partitioning

Gemini compares circuits using a graph isomorphism algorithm that works well for circuit
graphs. This algorithm partitions graphs using vertex invariants and then iteratively refines
the partitioning until all partitions consist of a single node. Since the partitions in the two
graphs must correspond, the nodes between the two graphs can be matched.

Gemini partitions the graphs by labeling the nodes: nodes with the same label are in the
same partition. The two graphs being compared are labeled in parallel and if the graphs
are equivalent, then the number of partitions and their size and labels must be the same.
Each time the graphs are relabeled, the partitions in the two graphs are sorted by label and
matched. Nodes are matched when singleton partitions are created.

The initial label for nodes is the device type for devices and the number of connections for
nets. Fach subsequent label is a function of the previous label and the labels of neighboring
nodes. The terminal classes are used by the labeling function to distinguish neighbors
connected through non-equivalent terminals. FEach time the graphs are relabeled, some
nodes will usually have unique labels, that is, that they are members of singleton partitions.
Using the heuristic that neighbors of uniquely labeled nodes are the most likely to be labeled
uniquely next, Gemini uses a local matching algorithm. It tries to deduce matches using
strictly local information and avoids the expensive relabeling step. If there are no frontier
nodes, then all nodes are relabeled. The -m flag disables the local matching feature. The
-o flag can be used to cause all nodes to be relabeled on every pass. Since circuit graphs
are bipartite with nets and devices forming the two parts, labeling alternates between nets
and devices.

If two circuit graphs are equivalent, the labeling process very quickly labels each node
uniquely. If there are differences, however, this algorithm finds out that the graphs are
different but does not do well finding the differences. This happens because nodes that
are labeled differently as a result of differences between the graphs affect the labels of
neighboring nodes. A small discrepancy may cause many nodes to be labeled differently
after only a few passes. (If the node happens to be Vdd, GND or a clock signal, then almost
all devices will have different labels in the next pass.) Gemini deals with this problem by
removing nodes that may have wrong labels from the labeling process. These nodes are
marked so that they will not be included when labels are calculated for neighboring nodes.
Gemini detects these suspect nodes when it compares the partitions in the two graphs after
each relabeling. All the nodes in partitions that do not correspond are marked suspect.
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Labeling continues normally for the other nodes, but if there are too many suspect nodes,
then there may not be sufficient labeling information for these nodes to be labeled uniquely.
For sufficiently small differences, however, some progress in the labeling process can be
made. When no more progress is detected, then the suspect nodes are ‘redeemed’ and
the labeling starts over again. If there is still no progress, Gemini must give up and all
remaining unmatched nodes are printed as error nodes.

Progress is measured as the number of unique nodes created in each pass. The number of
passes that are made with no progress before Gemini gives up can be set by the -p flag
which is 2 by default. The number of passes without progress that suspects are 'redeemed’
can be set by the -s flag which is 1 by default. Changing these parameters will affect how
quickly and how well Gemini will pinpoint differences between differing circuits, but the
default values usually work pretty well. The -t flag can be used to trace the progress of
the labeling.

3.2 Ambiguous Circuit Graphs

If Gemini ceases making progress in labeling the graphs before all nodes have been labeled
uniquely, it is either because the graphs are ambiguous or because they are different enough
that there is not enough information to label all nodes properly as described in the previous
section. Gemini handles this situation by making an educated guess as to which of the
remaining nodes in the two graphs match. Omne pair of nodes is arbitrarily picked and
labeled with a new value, in effect placing them in a new singleton partition. If Gemini is
run in interactive mode, then the user is asked to confirm Gemini’s guess. If the guess is
‘U Gemini will
not ask for further confirmation). Labeling then continues and other nodes can usually be
distinguished based on this arbitrary matching. If the graphs are equivalent and the labeling
has produced an automorphism partitioning (meaning that all partitions contain equivalent

not confirmed, Gemini will make another guess. (If the user answers with

nodes), then this procedure will always match equivalent nodes and the subsequent labeling
will find the graphs equivalent (subject to other disambiguating matches). In some rare
cases, however, Gemini’s educated guess will be wrong, and Gemini will think that the
circuits are different even though they are not. Gemini informs the user when this happens
and the only recourse is for the user to give more information about the circuits by matching
labels in the two circuits using the -E flag.

When graphs are different, Gemini will often end up with ambiguous partitions and be
forced to make a guess at a pair of nodes that match. Eventually Gemini will either make
the wrong guess or find no candidates that can be matched and all the remaining nodes
that have not been matched between the two graphs will be printed. If the two circuits
are sufficiently different, this set of nodes may contain nodes that are not really different
between the two graphs, but usually they will give a good indication of where the problem
is.
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Although Gemini does not use names when comparing graphs (and does not do much better
with them if the graphs are equivalent), names can be quite useful when the graphs are
different enough that Gemini has problems identifying the source of error. The user can tell
Gemini which nodes in the two circuits must match by entering their names in an equivalence
file. This can be used to good effect to reduce the number of nodes in ambiguous partitions.

Good examples of nodes that should be named are the inputs and outputs of bit slices that
are similar and clock or control signals. Care must be taken however. Consider the case
where the outputs of a PLA have all been grounded (an actual case history from our files).
Matching the ground nets for example causes every transistor in the OR, plane of the PLA
to be mislabeled and the resulting error report from Gemini will not be very elucidating.
But leaving the grounds unmatched allows Gemini to throw away some information (the
ground net) and still have enough to match all nodes except the PLA outputs, which are
exactly the nodes in error.
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A Gemini Input Format

The Gemini input format is a simple but general wirelist syntax that can be used to represent
almost any type of circuit. A circuit consists of devices of various types whose terminals
(connection points) are connected by nets. A wirelist file simply lists the device types,
devices and nets appearing in the circuit. Fach type, device and net may be named but
these names are usually used only for annotating the output listing. If there is no name for
a node, then “*” is used by convention. Individual types, devices and nets are referenced
by index (zero-based) according their position in each list.

The Gemini file syntax is:
<number-of-types>
<type-O-name> <number-of-terminals> <terminal-class-0> ... <terminal-cl
<type-n-name> <number-of-terminals> <terminal-class-0> ... <terminal-cl

<number-of-devices> <number-of-nets>

<device-0O-name> <type> <net> ... <net> <properties>
<device—£;£ame> <type> <net> ... <net> <properties>
<net-0-name> <number-connects> <device>,<terminal> ... <device>,<termin
<net—n—n;ﬁé> <number-connects> <device>,<terminal> ... <device>,<termin

An example file appears at the end of this section.

The first part lists all the device types used in the circuit. Devices are the same type
if and only if they are functionally equivalent and have the same number of terminals
(connections). For example, a 2 input AND gate is different from a 2 input OR gate or
a 3 input AND gate. The terminal classes are (arbitrary) numbers used to group device
terminals that are equivalent. For example, an AND gate has two input terminals in one
class (since these connections can be interchanged) and an output terminal in another class.
NMOS circuits have only two device types: enhancement and depletion mode transistors.
CMOS circuits have only two device types: n and p transistors.

Second is the list of circuit devices. Following the device name is the device’s type index
and a list of terminal connections in the same order as the terminals are given in the type
entry. Each connection is given by the index of the net to which the terminal is connected.
The remainder of the line is taken as the property string. This is an arbitrary string that
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further describes the device but does not affect its type. The property string is technology
dependent in general and can be used only if the particular technology is understood by
Gemini. NMOS and CMOS are the only technologies specifically recognized. The property
string contains the transistor length and width for devices.

Last comes the list of circuit nets. After the net name is the number of connections to the
net followed by the list of connections. Each connection consists of a pair of numbers: the
index of the device in the device list and the terminal number of the device. Following the
connection list is the property string. For CMOS and NMOS technologies, this string is
empty.

A complete file for a single NOR gate in NMOS technology is shown below by way of
example.

2
dep
enh

O ¥ ¥ ¥ W
O O

= W w o =
O O O - =

N

(@]

N

(@]

vdd
a
gnd 1,1

b

ol S R o S i @ R ¢ ) I OV I OV)
NN PR, ONPBNO

This file is equivalent to the following SIM file:

d ccvdd 8.00 2.00r 0 0 16.00
e a gnd ¢c 2.00 2.00 r 0 0 4.00
e bgnd c2.002.00r 00 4.00
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