

A Low-Power Neuromorphic CMOS Delta-Sigma Modulator Featuring Tunable Background Attenuation and Potentiostatic Asynchronous Readout for Smart Amperometric Electrochemical Sensors

> Javier Cuenca-Michans, Joan Aymerich, Lluís Terés, Cecilia Jiménez-Jorquera, Francisco Serra-Graells, Josep Maria Margarit-Taule javier.cuenca@csic.es

> > Instituto de Microelectrónica de Barcelona. IMB-CNM(CSIC) Universitat Autònoma de Barcelona (UAB)

> > > May 23, 2023

1 Introduction

2 Sensor-in-the-loop Neuromorphic ΔΣ Modulation Architecture

3 Asynchronous 3-level $\Delta\Sigma$ modulator circuits

4 Simulation resuts in 65-nm CMOS technology

5 Conclusions

Introduction: Amperometric sensors

- Three electrodes:
 - Working
 - **R**eference
 - Counter
- Potentiostatic operation:
 Constant V_{RW}
 - 🗆 null **I_{R</mark>**}

کماز

CNM

Signal current associated to the electrons involved in a redox process

$$0 + e^- \stackrel{\text{red}}{\underset{\text{ox}}{\longleftarrow}} R$$

CSIC

 Dynamic range limited by background currents (resistive losses and capacitive currents)

Universitat Autònoma

de Barcelona

3/12

Introduction: Objectives

Neruromorphic, adaptive Delta-Sigma ($\Delta\Sigma$) Modulator readout architecture:

- Clockless data conversion (sampling rate according to WE current dynamics)
- Tunable and embedded data compression (low-pass filtering of out-of-band background components)

Sensor-in-the-loop Neuromorphic $\Delta\Sigma$ Modulation Architecture

Universitat Autònoma

de Barcelona

Linear model

CUU ® JEUR

- Sensor-in-the-loop architecture
- Dual-feedback scheme

CSIC

Sensor-in-the-loop Neuromorphic $\Delta\Sigma$ Modulation Architecture

CUU ® JEUR

Asynchronous 3-level $\Delta\Sigma$ modulator circuits

Differential hysteresis comparator

Circuit diagram

காறை போத 🕷 CSIC

Simulation resuts in 65-nm CMOS technology $I_{\text{sens}} \land R_{\text{ct}}$ $\pm C_{\rm dl}$ Sinusoidal input with offset Half voltammetry cycle 🖶 Linear model Background current is compensation Offset compensation Dynamic range extended Efficient data compression Input current $D_{\rm slow}$ Resistive Input current Feedback DAC losses D_{out1} Capacitive $D_{\rm out}$ Filtered output pulses current Slow feedback OFF $I_{\rm sens}$ D_{out2} $D_{\rm pos}$ Slow feedback **ON** D_{neg} Time $[2 \, \text{s/div}]$ Time $[5 \, \text{s/div}]$

CSIC SIC

CSIC

J. Cuenca Michans

Simulation resuts in 65-nm CMOS technology

Universitat Autònoma

de Barcelona

Power Spectral Density

ເມນີ ເປັນ

Conclusions

- Neuromorphic CMOS ΔΣ modulator:
 - Automatic potentiostat regulation of the desired potential (V_{RW})
 - Asynchronous A/D conversion of the signals from the sensor
 - Configurable compression of capacitive currents and sensor drifts
- So, what is next?

201 🕲

GUU

- Electrical tests and characterization
- Electrochemical experimentation
- Think about future designs

SIC

J. Cuenca Michans

...thank you for your attention!

A Low-Power Neuromorphic CMOS Delta-Sigma Modulator Featuring Tunable Background Attenuation and Potentiostatic Asynchronous Readout for Smart Amperometric Electrochemical Sensors

> Javier Cuenca-Michans, Joan Aymerich, Lluís Terés, Cecilia Jiménez-Jorquera, Francisco Serra-Graells, Josep Maria Margarit-Taule javier.cuenca@csic.es

> > Instituto de Microelectrónica de Barcelona. IMB-CNM(CSIC) Universitat Autònoma de Barcelona (UAB)

> > > May 23, 2023

