

A 0.8mW 50kHz 94.6dB-SNDR Bootstrapping-free **SC Delta-Sigma Modulator ADC** with Flicker Noise Cancellation

2021 IEEE International Symposium on Circuits and Systems May 22-28, 2021 Virtual & Hybrid Conference

Alejandro Suanes, Lluís Terés, Michele Dei and Francisco Serra-Graells Instituto de Microelectrónica de Barcelona IMB-CNM(CSIC), Spain

Experimental Results 5

Conclusions

Low-Power Switched-Capacitor $\Delta\Sigma M$ Architecture

Alejandro Suanes et al., IMB-CNM(CSIC)

Introduction and State-of-Art **2** Low-Power Switched-Capacitor ΔΣM Architecture **3 Built-In Flicker-Noise Cancellation**

4 Low-Power CMOS Switched OpAmps

5 Experimental Results

Conclusions

Alejandro Suanes et al., IMB-CNM(CSIC)

Intro $\Delta \Sigma M$ Arch Flicker Noise CMOS OpAmps Experimental Conclusions

State-of-Art

Schreier FoM:

$FOM_{S} = SNDR_{max} + 10 \log \frac{J_{nyq}}{2P_{d}} [dB]$

Best FOMs achieved by:

+ SAR (moderate-high resolution) + $\Delta \Sigma M$ (high resolution)

High-resolution ADCs are scarce:

Increased complexity of CMOS design + Most applications do not require so much resolution. Low-power consumption is preferable in many cases for multi-channelling purposes

Enn III CSIC

ISCAS 2021/Daegu, KOREA

2/14

 $SNDR_{max}$ [dB]

ISCAS 2021

Target Design Space

- FOM not so fair for high-res. Designs must consider many things:
 - + Flicker noise, clock jitter, suppy coupling + Switch non-linearity and charge injection + OpAmp gain non-linearity + Technology mismatching
- Also, FOM does not tell:
 - + PVT robustness + Need for circuit calibration + Internal supply bootstrapping
- \triangleright Oversampled switched-capacitor (SC) $\Delta\Sigma M$ preferred:
 - No need for calibration + +

CSIC

Enn III

Low sensitivity to CMOS technology compared to continuous-time (CT) $\Delta \Sigma M$

Intro $\Delta \Sigma M$ Arch Flicker Noise CMOS OpAmps Experimental Conclusions

ISCAS 2021/Daegu, KOREA

ISCAS 202[°]

1 Introduction and State-of-Art

Low-Power Switched-Capacitor $\Delta\Sigma M$ Architecture 2

3 Built-In Flicker-Noise Cancellation

4 Low-Power CMOS Switched OpAmps

5 Experimental Results

Conclusions

Alejandro Suanes et al., IMB-CNM(CSIC)

Low-Power Architecture

OSR = 128

- Second-order loop filter
- Feed-forward path
- 9-level multi-bit quantizer

Quantizer input fullscale (FS) halved to compensate passive adder attenuation

Enn III CSIC

Moderate oversampling ratio (OSR = 128)

Alejandro Suanes et al., IMB-CNM(CSIC)

Low-Power Architecture

OSR = 128

- **Second-order** loop filter
- Feed-forward path
- 9-level multi-bit quantizer

Gnm CSIC

Moderate oversampling ratio (OSR = 128) Quantizer input fullscale (FS) halved to compensate passive adder attenuation

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

Low-Power Architecture

OSR = 128

with other implementations

This combination of multibit-quantization, low shaping-order and moderate oversampling saves about 75% of the power associated with internal signal dynamics compared

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

CSIC

Enn IIII

¹[11] J. Cisneros-Fernández, F. Serra-Graells, L. Terés, and M. Dei, "A Compact Switched-Capacitor Multi-Bit Quantizer for Low-Power High-Resolution Delta-Sigma ADCs"

Alejandro Suanes et al., IMB-CNM(CSIC)

$\Delta \Sigma M$ Arch

ISCAS 2021/Daegu, KOREA

SC Integrators

+ Fully-differential switched OpAmp (SOA)

Resistor-less multi-bit quantizer

> + Strong-ARM Comparator

Bubble error correction (BEC

Data-weighted averaging (DWA) algorithm

CSIC

Enn III

¹[11] J. Cisneros-Fernández, F. Serra-Graells, L. Terés, and M. Dei, "A Compact Switched-Capacitor Multi-Bit Quantizer for Low-Power High-Resolution Delta-Sigma ADCs"

Alejandro Suanes et al., IMB-CNM(CSIC)

$\Delta \Sigma M$ Arch

ISCAS 2021/Daegu, KOREA

SC Integrators

+ Fully-differential switched OpAmp (SOA)

Resistor-less multi-bit quantizer

+ Strong-ARM Comparator

Bubble error correction (BEC

Data-weighted averaging (DWA) algorithm

CSIC

Enn III

¹[11] J. Cisneros-Fernández, F. Serra-Graells, L. Terés, and M. Dei, "A Compact Switched-Capacitor Multi-Bit Quantizer for Low-Power High-Resolution Delta-Sigma ADCs"

Alejandro Suanes et al., IMB-CNM(CSIC)

$\Delta \Sigma M$ Arch

ISCAS 2021/Daegu, KOREA

SC Integrators

- + Fully-differential switched OpAmp (SOA)
- **Resistor-less** multi-bit quantizer
 - + Strong-ARM Comparator
- **Bubble error correction** (BEC)
- Data-weighted averaging (DWA) algorithm

CSIC

Enn IIII

Alejandro Suanes et al., IMB-CNM(CSIC)

$\Delta \Sigma M$ Arch

ISCAS 2021/Daegu, KOREA

6/14

ISCAS 2021

· 1	8 pF	V _{cm}	0.9 V		
•		V _{hi}	1.4 V		
2	2 pr	V _{lo}	0.4 V		
3	0.5 pF	Vq	0.65 V		

	-55°C	27°C	125°C		
/	94.9	95.1	93.1		
	96.2	96.5	93.2		
ł	94.8	92.4	93.6		
SNDR _{max} [dB]					

1 Introduction and State-of-Art

2 Low-Power Switched-Capacitor ΔΣM Architecture

Built-In Flicker-Noise Cancellation 3

4 Low-Power CMOS Switched OpAmps

5 Experimental Results

Conclusions

Alejandro Suanes et al., IMB-CNM(CSIC)

Flicker-Noise Cancellation

CSIC

Enn

Minimalist topology modification (feedback switch) Increased clock complexity **3-phase CDS based operation:** Shapping function obtained for OpAmp noise: Low-frequency noise is virtually removed **V** OpAmp white-noise power will double due to aliasing (CDS distance is half a period)

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

Flicker-Noise Cancellation

Minimalist topology modification (feedback switch) Increased clock complexity **3-phase CDS based operation:** Shapping function obtained for OpAmp noise: Low-frequency noise is virtually removed **V** OpAmp white-noise power will double due to aliasing (CDS distance is half a period)

Alejandro Suanes et al., IMB-CNM(CSIC)

Flicker Noise CMOS OpAmps Experimental Conclusions

ISCAS 2021/Daegu, KOREA

Flicker-Noise Cancellation

Minimalist topology modification (feedback switch) Increased clock complexity 3-phase CDS based operation: Slewing phase + Noise sampling phase + Integration phase **Low-frequency noise** is virtually removed

V OpAmp white-noise power will double due to aliasing (CDS distance is half a period)

Shapping function obtained for OpAmp noise:

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

Flicker-Noise Cancellation

Minimalist topology modification (feedback switch) Increased clock complexity 3-phase CDS based operation: Slewing phase Noise sampling phase + Integration phase **Low-frequency noise** is virtually removed

- Shapping function obtained for OpAmp noise:
- **V** OpAmp white-noise power will double due to aliasing (CDS distance is half a period)

Alejandro Suanes et al., IMB-CNM(CSIC)

Flicker Noise CMOS OpAmps Experimental Conclusions

ISCAS 2021/Daegu, KOREA

Flicker-Noise Cancellation

- Minimalist topology modification (feedback switch)
- Increased clock complexity
- 3-phase CDS based operation:
 - Slewing phase Noise sampling phase + Integration phase ----

CSIC

Enn III

Shapping function obtained for OpAmp noise: + $V_{\text{out}} = V_{\text{in}} + (V_{\text{neq}}[n] - V_{\text{neq}}[n - 1/2])$

Low-frequency noise is virtually removed

V OpAmp white-noise power will double due to aliasing (CDS distance is half a period)

Alejandro Suanes et al., IMB-CNM(CSIC)

Flicker Noise CMOS OpAmps Experimental Conclusions

ISCAS 2021/Daegu, KOREA

Clock Generation

Sub-sampling phases time allocation:

- the switching glitches. for each one

injection. Unrelated to flicker-noise cancellation

Ennesins #CSIC

A short slewing phase might prove insufficient to accurately sample the input. Also, it increases amplifier duty-cycle. A short noise sampling phase might not allow amplifier start-up and also capture ▲ A good trade-off is using 50% duty-cycle

For a robust and simple clock generation

 $f_{\rm clki} = 2f_{\rm samp}$

Clock pairs [1,2] and [3,4] are in phase but delayed to mitigate non-linear charge

Alejandro Suanes et al., IMB-CNM(CSIC)

Flicker-Noise Simulation results

SNR improvement around 12 dB

V Power consumption of 1st integrator increased by 50%

 \blacktriangle FOM_S net improvement of 10 dB (even assuming total power is from 1st stage)

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

1 Introduction and State-of-Art

2 Low-Power Switched-Capacitor ΔΣM Architecture

3 Built-In Flicker-Noise Cancellation

Low-Power CMOS Switched OpAmps 4

5 Experimental Results

Conclusions

Alejandro Suanes et al., IMB-CNM(CSIC)

Intro ΔΣM Arch Flicker Noise CMOS OpAmps Experimental Conclusions

Fully-differential Class-AB topology²:

- A High output dynamic currents $(I_{max} = k_{AB}I_{bias})$ ▲ High PSRR, CMRR
- Low PVT sensitivity
- No compensation required

Switched-OpAmp Operation fully compatible with SC CMFB

results in:

Reduction of static power Parasitic pole at lower frequency. Stability worsened

²[13] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, "Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single-Stage **OTAs for Low-Power SC Circuits**"

Design trade-off around k_{AB}. Increasing k_{AB}

$k_{AB} = 1 + \frac{B}{2C}, A = B + C$

Alejandro Suanes et al., IMB-CNM(CSIC)

CMOS OpAmps

ISCAS 2021/Daegu, KOREA

Fully-differential Class-AB topology²:

- High output dynamic currents $(I_{max} = k_{AB}I_{bias})$ High PSRR, CMRR
- Low PVT sensitivity
- No compensation required

with SC CMFB

results in:

Ennesins #CSIC

Reduction of static power worsened

²[13] S. Sutula, M. Dei, L. Terés, and F. Serra-Graells, "Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single-Stage **OTAs for Low-Power SC Circuits**"

Switched-OpAmp Operation fully compatible

Design trade-off around k_{AB}. Increasing k_{AB}

Parasitic pole at lower frequency. Stability

 $k_{AB} = 1 + \frac{B}{2C}, A = B + C$

Alejandro Suanes et al., IMB-CNM(CSIC)

CMOS OpAmps

ISCAS 2021/Daegu, KOREA

B+C	ck _n				
- (M _{12p}		OpAmp off and C _{cmfb} preset	OpAmp and CMFB on		
A		$(L)_{1n-2n}$	4×4/0.2		
		//L) _{1p-2p}	4×5/0.2		
	(W	//L) _{3n-4n}	1×0.8/0.2		
$k_{AB} = 4.5$	(W	//L) _{5n-6n}	7×0.8/0.2		
	(W	//L) _{7n-12n}	8×0.8/0.2		
		/L) _{3p-4p}	1×0.6/0.3		
np C _{cmfb}	(W	//L) _{5p-6p}	7×0.6/0.3		
		//L) _{7p-12p}	8×0.6/0.3		
		/L) _{13n}	1×0.5/0.24		
	(W	//L) _{14n}	8×0.5/0.24		
	(W	/L) _{15n}	3×0.5/0.24		
		//L) _{13p}	2×4/0.48		
	(W	//L) _{14p}	4×4/0.48		
	C	mfb	0.4 pF		
	I bia	S	30 µ A		

1 Introduction and State-of-Art

2 Low-Power Switched-Capacitor ΔΣM Architecture

3 Built-In Flicker-Noise Cancellation

4 Low-Power CMOS Switched OpAmps

Experimental Results 5

Conclusions

Alejandro Suanes et al., IMB-CNM(CSIC)

Chip Photo

+ 1.8V 0.18µm 6-metal CMOS technology

Second integrator

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

Multibit quantizer

First integrator + DAC

Digital (BEC/DEM)

ISCAS 2021

Experimental Conclusions

Measured Performance

$ightarrow SNDR_{max} = 94.6 \, dB \, 0 \, -1 \, dBFS, \, 1 \, kHz$ High spectral purity (SFDR = 103.5 dB)

CSIC

Enn IIII

Alejandro Suanes et al., IMB-CNM(CSIC)

Measured Performance

$ightarrow SNDR_{max} = 94.6 \, dB \, 0 \, -1 \, dBFS, \, 1 \, kHz$ High spectral purity (SFDR = 103.5 dB)

CSIC

En Sices

Alejandro Suanes et al., IMB-CNM(CSIC)

Clock generation also power hungry (driving) buffers mainly)

ISCAS 2021/Daegu, KOREA

Main power consumption from 1st integrator

Measured Performance

							This	
	[2]	[3]	[4]	[5]	[9]	[10]	work	
Architecture	Loop	Loop	MASH	Loop	Zoom	Zoom	Loop	
shaping order	7^{th}	5^{th}	$4^{ ext{th}}$	2^{nd}	3^{rd}	3^{rd}	2 nd	
quantization	3-level	17-level	multi-bit	18-level	2-level	4-level	9-level	
Technology	800	350	250	180	160	160	180	nm
Supply voltage	5	5		0.7	1.8	1.8	1.8	V
Diff. full scale	4		6.6		3.5		2	$V_{\rm pp}$
Sampling rate	6.14	5.12	20	5	11.29	3.5	12.8	MS/s
Bandwidth	48	20	1000	25	20	20	50	kHz
Supply power	760	55	475	0.87	1.65	0.44	0.80	mW
Area	25	5.6	20.2	2.16	0.16	0.27	0.20	mm^2
$\mathrm{SNDR}_{\mathrm{max}}$	110	105	103*	95	98.3	106.5	94.6	dB
$\mathrm{FOM}_{\mathrm{S}}$	158.0	160.6	166.2*	169.6	169.1	183.1	172.6	dB
Bootstrap-free	Yes	Yes	Yes	No	No		Yes	
Resistor-less	Yes	Yes	Yes	Yes	Yes	No	Yes	

Games juns CSIC

Bootstrapping-free

Resistor-less implementation

Competitive $FOM_S = 172.6 \text{ dB}$

Alejandro Suanes et al., IMB-CNM(CSIC)

ISCAS 2021/Daegu, KOREA

1 Introduction and State-of-Art

2 Low-Power Switched-Capacitor ΔΣM Architecture

3 Built-In Flicker-Noise Cancellation

4 Low-Power CMOS Switched OpAmps

5 Experimental Results

Conclusions

Alejandro Suanes et al., IMB-CNM(CSIC)

Intro $\Delta \Sigma M$ Arch Flicker Noise CMOS OpAmps Experimental Conclusions

Conclusions

Ennesins #CSIC

- + 9-level second-order single-loop SC $\Delta\Sigma$ M ADC + Features implementation of SC flash multi-bit quantizer + Features implementation of variable-mirror Class-AB SOAs + Proposed CDS-based flicker-cancellation mechanism

- + Competitive 172.6 dB FOM_S obtained

This work has been partially funded by the European Space Research and Technology Center (ESTEC), The Netherlands

Thanks for your attention!

Alejandro Suanes et al., IMB-CNM(CSIC)

+ Measured high-resolution (94.6 dB) and low-power (0.8 mW) experimentally

