

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

A 1024-Ch GFET 10-bit 5-kHz 36-μW Read-Out Integrated Circuit for Brain μECoG

J.Cisneros¹, A.Guimera¹, R.Garcia², N.Schafer²,

J.A.Garrido^{2,3}, LI.Teres^{1,4} and F.Serra-Graells^{1,4}

¹Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC), Spain ²Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Spain ³ICREA, Spain ⁴Dept. of Microelectronics and Electronic Systems, Universitat Autònoma de Barcelona, Spain

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

Content

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

-AS

- Liquid-Gate GFET
- Time-Multiplexing
- **ROIC**
- DC Offset Cancellation
- CDS + PGA
- Chip
- Conclusions

Introduction

27th IEEE International Conference on Electronics Circuits and Systems O Glorgow, Scotland November 18-20, 2020 27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

- Monolithical high density in small areas,
 high fabrication cost and low scalability
- Hybrid (sensors+IC) device preferred for large sensing area, low cost, CMOS compatibility and flexible substrates
- New Hybrid multiplexing scheme for low cost and large area flexible GFET active sensor arrays

SIC com ins in CN29 UAB

 $A \subseteq$

Liquid-Gate GFET

- Liquid-gate Graphene field-effect transistors (GFETs) are good candidates for micro-electrocorticography (μECOG)
- ▲ Good Signal-to-Noise Ratio (SNR) while keeping biocompatibility, low dimensionality and mechanical flexibility
- Active sensor with an expected transcoductance of Gm = 0.1 mS and Rds of ~2 kOhm
- GFET ambivalent conduction requieres from second technology for multiplexing

Time-Multiplexing

27th IEEE International Conference on Electronics Circuits and Systems

Virtual, November 23-25, 2020

5

Classic Time-Domain Multiplexing

- **GFET + Switch** Technology integration
- ▲ At any time only **one device connected per row**

SIC com ins in CN29 UMB 🙂

Time-Multiplexing

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

Classic Time-Domain Multiplexing CMOS $\chi @Col_X Selector$ Column frontend digital multiplexer Row \sim current Gfet read-out Sensor \sim Series $\sqrt{\lambda}$ $\sqrt{}$ Switch 는 $\wedge \wedge$ $\sim \sim$ $\wedge \sim$ $\sqrt{\Lambda}$ GFET 'matrix

- GFET + Switch Technology integration
- ▲ At any time only one device connected per row

Proposed Time-Domain Multiplexing

- On-chip cmos switch for multiplexing
- Pre-Amplifier Noise Figure Loss due to GFET permanent connection

Architecture

On-Chip cmos switch

- Single-to-Differential Amplifier
- Transimpedance Amplifier (R_{GAIN} = 25 kOhm) > Programable Gain Amplifier + CDS
- Offset Cancellation 3-Bit R-DAC

SAR ADC 10 Bit ENOB

UPC

Operation

- Channel multiplexing controlled by changing V_{DS} of selected column
- One Column selected at a given time (array power consumption limited to 32 GFETS)
- Remaining Columns biased to ground by the respective Transimpedance amplifier

UPC

Operation

Two Challenges:

- ▼ AFE Noise figure loss due to GFET Up-Scaling
- **V** GFET R_{DS} variability and DC Offset

SCSIC como ins in ICN29 UA

DC Offset Cancellation

Trade-Off: High Transresistance needed for Bio-Signal amplification but DC Offset must be cancelled to avoid saturation

DC Offset Cancellation

11

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

- ▲ **Prevents saturation** by subtracting the corresponding DC Current
- **Covering** a **mismatch** of **±30% on 5% Step**s from the Typ. 2 kΩ GFET
- Individual Offset cancellation configuration for each recording site (Offset configuration map)

SIC com tra ins CN29 UAB

Transimpedance noise figure loss due to GFET permanent connection

$$\text{NTF} = \frac{1}{1 + G_{\text{amp}}H} \sim \frac{1}{G_{\text{amp}}H} \quad \text{H} = \frac{R_{\text{gfet}}/32}{R_{\text{gfet}}/32 + R_{\text{gain}}} \simeq \frac{1}{32} \frac{R_{\text{gfet}}}{R_{\text{gain}}} \simeq \frac{1}{400}$$

Analog-Front-End

SIC CSIC CM SICAS CSIC MAB

Return-to-Zero Phase

Return-to-Zero Phase

Amplification Phase

SIC CON29 UMB

- ▲ Low-Frequency Noise from AFE cancelled
- ▲ Overall AFE still DC Coupled
- ▲ CDS circuit reuses the discrete Switched-Capacitor PGA stage

18.1 mm² ASIC Integrated in **1.8V 0.18 μm 1P6M MIM XFAB**

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

1024-CHANNEL ROIC POST-LAYOUT SIMULATION RESULTS.

	Value	Units
transresistance	25	kΩ
equiv. input offset	< 1	$\text{mV}_{\rm rms}$
voltage gain	2/4/8/16	-
CDS output noise	< 2	$\text{mV}_{\rm rms}$
diff. full scale	2	$V_{\rm pp}$
sampling rate	422	kS/s
per channel	13.2	
dynamic range	13	ENOB
input	1	SPI
output	8	serial
speed	27	Mbps
voltage	± 0.9	V
analog ref.	± 0.5	
preamplifier	800	μW
PGA	260	
SAR ADC	80	
per channel	36	
chip	18.7	mm^2
per channel	0.018	
	transresistance equiv. input offset voltage gain CDS output noise diff. full scale sampling rate per channel dynamic range input output speed voltage analog ref. preamplifier PGA SAR ADC per channel chip per channel	Valuetransresistance 25 equiv. input offset <1 voltage gain $2/4/8/16$ CDS output noise <2 diff. full scale 2 sampling rate 422 per channel 13.2 dynamic range 13 input 1 output 8 speed 27 voltage ± 0.9 analog ref. ± 0.5 preamplifier 800 PGA 260 SAR ADC 80 per channel 36 chip 18.7 per channel 0.018

🕈 CSIC com (ins 🔂 CN2 U

- ▲ High Transresistance
- ▲ 4 PGA Gains (1 Decade)
- ▲ 2Vp-p Differential FS from 1.8 V
- ▲ 6.6 kHz Bandwidth/Ch
- ▲ 1 SPI for PGA gain configuration, Offset cancellation map and TDM column Scan
- ▲ Output Data rate 216 Mbps
- A Power consumption 36 μ W/Ch
- Area 0.018 mm²/Ch

UPC

- ▲ **1024-channel** modular µECoG **ROIC with liquid-gate GFETs**
- ▲ Novel multiplexing scheme with strong sensor-to-circuit connectivity reduction for low-cost integration and lowpower operation
- ▲ Mixed-signal ROIC architecture capable for GFET mismatch and preamplifier noise figure loss compensation

CAS

27th IEEE International Conference on Electronics Circuits and Systems Virtual, November 23-25, 2020

Thanks for your attention!

Partially funded by European Commission H2020-FETPROACT-2016-732032

