Switch-Less Frequency-Domain Multiplexing of GFET Sensors and Low-Power CMOS Frontend for 1024-Channel µECOG

<u>J.Cisneros-Fernández</u>¹, M.Dei¹, L.Terés^{1,2} and F.Serra-Graells^{1,2} jose.cisneros@imb-cnm.csic.es

¹Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC), Spain

²Universitat Autònoma de Barcelona, Spain

May 2019

- 2 Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

※CSIC GAM近中5
J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

- 2 Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

※CSIC GAM () 近れら () J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

- Low-power ICs with massive number of channels needed for neural recording
- Monolithical high density in small areas, high fabrication cost and low scalability.
- Hybrid (sensors+IC) device preferred for large sensing area, low cost, CMOS compatibility and flexible substrates = sensor multiplexing
- ▲ Liquid-gate Graphene field-effect transistors (**GFETs**) are good candidates for micro-electrocorticography (**µECOG**)

- 2 Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

Serra-Graells 📱 Serra-Graells 📱 J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

Frequency-Domain Multiplexing

Classic Time-Domain Multiplexing

Frequency-Domain Multiplexing

=Multiplexing artifacs

▼ GFET mismatch + transient operation

Each GFET is permanently connected
 Switch-less and artifact-free

CMOS

frontend

Row

current

read-out

Frequency-Domain Multiplexing

Each GFET is permanently connected and used as transconductor+mixer

- ▲ Insensitive to CMOS flicker noise
- ▲ Low-noise **lock-in** demodulation

Frequency-Domain Multiplexing

Frequency-Domain Multiplexing

Symmetrical operation

Asymmetrical operation

 $I_{\rm D}$

 $V_{\rm DS}$

$$I_{\rm D}|_{V_{\rm G0}} \simeq G_{\rm out} \left(V_{\rm DS} + c_2 V_{\rm DS}^2 + c_3 V_{\rm DS}^3 + \cdots \right)$$

- FDM carrier pre-distortion to promote second-harmonic cancellation:
 - + Calibration not needed
 - + Compatible with I/Q generation

$$V_{\rm col} = V_0 \left[\sin(w_{\rm c}t) + a_3 \sin(3w_{\rm c}t) \right]$$

$I_{\rm row}$	DC	$w_{ m c}$	$2w_{\rm c}$	$3w_{ m c}$	• • •
$a_3 = 0$	$\frac{1}{2}c_2$	$1 + \frac{3}{4}c_3$	$-\frac{1}{2}c_2$	$-\frac{1}{4}c_{3}$	• • •
$a_3 = \frac{1}{2}$	$\frac{5}{8}c_2$	$1 + \frac{3}{4}c_3$	0	$\frac{1}{2} - \frac{29}{32}c_3$	• •

- 2 Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

※CSIC GAM () CPS () J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

1024-Channel ROIC Architecture

Modular and **scalable** read-out IC (**ROIC**) for 32x32 GFET sensory arrays:

ISCAS 2019

※CSIC Cnm() 『エー・ J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

1024-Channel ROIC Architecture

- **ROIC specifications** from functional model in Scientific Python:
- ▲ Recording of local field potentials (LFPs) and high-frequency **spikes**
- Highly configurable to cover GFET process corners
- ▼ Main design trade-offs at system level:

+ FDM freq. allocation vs GFET bandwidth

- + FDM carrier amplitude vs GFET array power
- + Row ADC sampling rate vs channel aliasing
- + Row ADC DR vs number of array columns

Parameter		Value	Units
Array size		32×32	Ch
Channel	bandwidth	DC to 5	kHz
	full scale	5	mV
	resolution	5	μV
	dynamic range	60	dB
Col. FDM	I/Q carrier freq.	340:20:640	kHz
	guard spacing	10	kHz
	carrier amp.	10 to 50	mV_{p}
Row ADC	sampling rate	≥ 1.6	MS/s
	dynamic range	≥ 12	ENOB

Scale and F.Serra-Graells 🗒 J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

- 2 Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

Serra-Graells J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

Linear VCRO with Symmetrical Propagation Delay

- Two-stage current-starved voltage-controlled ring oscillator (VCRO) for the column PLL
- \blacktriangle Quadrature (**I**/**Q**) generation

Linear VCRO with Symmetrical Propagation Delay

- Two-stage current-starved voltage-controlled ring oscillator (VCRO) for the column PLL
- \blacktriangle Quadrature (I/Q) generation
- ▲ **Symmetrical** propagation delays by the addition of logical masking

Linear VCRO with Symmetrical Propagation Delay

- Two-stage current-starved voltage-controlled ring oscillator (VCRO) for the column PLL
- \blacktriangle Quadrature (I/Q) generation
- ▲ Symmetrical propagation delays by the addition of logical masking
- ▲ **Linear** V/I conversion to improve PLL stability:

$$I_{\text{ctrl}} = \beta_1 \left(V_{\text{ctrl}} - V_{\text{TH1}} - \frac{n}{2} V_{\text{tun}} \right) V_{\text{tun}} \quad V_{\text{tun}} = U_t \ln P$$

SAPPORO JAPAN MAY 26-29 2019

Scsic Cnm () J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

FDM Carrier DAC with Class-AB Column Driver

- ► Each PLL generates I/Q square waveforms at the FDM frequency $w_c/2\pi$ and $3w_c/2\pi$
- ▲ Synthesis of carrier **pre-distortion**:

🕈 CSIC Com الله ألحاق 🔅 المعامة المعامة المعامة المعامة المعامة المعامة المعامة المعامة المعامة المحافظة ال

FDM Carrier DAC with Class-AB Column Driver

- ► Each PLL generates I/Q square waveforms at the FDM frequency $w_c/2\pi$ and $3w_c/2\pi$
- ▲ Synthesis of carrier **pre-distortion**:

Single-stage Class-AB variable-mirror amplifier (VMA):

+ Low PVT sensitivity

FDM Carrier DAC with Class-AB Column Driver

- Each PLL generates I/Q square waveforms at the FDM frequency $w_c/2\pi$ and $3w_c/2\pi$
- ▲ Synthesis of carrier **pre-distortion**
- ▲ Efficient V_{col} driving of the **low-impedance** (~60Ω) GFET array column:

Single-stage Class-AB variable-mirror amplifier (VMA):

+ Simple frequency compensation+ Low PVT sensitivity

SAPPORO JAPAN MAY 26-29 2019

SAR ADC with Low-Kickback Comparator

- Segmented (6MSB+7LSB) SAR ADC for each array row:
 - + $2-V_{pp}$ differential full scale
 - + 60-fF unitary capacitor
 - + 1.8-MS/s sampling freq.
- Low-power operation usually V_i allows kickback to reach high-impedance comparator inputs
- Low kickback can be achieved by combining folded cascode input and preset at metastability:
 - + 13-bit ENOB
 - + 125- μ W power consumption @ 1.8V

- **2** Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

※CSIC GAM『エーラ United and F.Serra-Graells 第一人の「「「「「「」」」。

🕈 CSIC السبقة المحتفظة المحتا المحتة المحتفظة المحتفظة المحتفة المحتفة ال

20/24

Test Chip

- Integrated in 0.18-µm
 6-metal CMOS technology
- To be tested with 8x8 GFET arrays
- 8x8 vs 32x32 ROIC = Num. of Modules
- ▲ All CMOS building blocks designed for **1024-ch** specs
- ▲ In case of reducing system configurability, the **final ROIC** could be targeted for:
 - + < 50 mW
 - $+ < 25 mm^2$

Parameter		Value	Units
Col. FDM	I/Q carrier freq.	340:20:640	kHz
		170:10:320	kHz
	carrier amp.	10 / 20 / 50 / 100	mVp
Preamp	transresistance	5	kΩ
PGA	voltage gain	1 / 2 / 4 / 8	-
Row ADC	diff. full scale	2	V _{pp}
	sampling rate	1.8	MS/s
	dynamic range	13	ENOB
Master clock	frequency	27	MHz
Digital I/O	bus width	16	bit
Supply	core circuits	± 0.9	V
voltage	pad ring	± 1.65	-
	analog ref.	± 0.5	-
Power	PLL	32	μW
$\operatorname{consumption}$	DAC	648	-
	Preamp	648	-
	PGA	810	-
	SAR ADC	125	-
	total	70	$\mu W/Ch$
Silicon area		0.013	$\mathrm{mm}^2/\mathrm{Ch}$

🗱 CSIC CAM 🛞 ĴCAS 🌐 🛛 J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

- 2 Frequency-Domain Multiplexing of GFETs
- 3 1024-Ch ROIC Architecture
- 4 Low-Power CMOS Circuits
- 5 Test Chip in 0.18µm CMOS Technology

6 Conclusions

※CSIC GAM『エーラ United and F.Serra-Graells

22/24

Conclusions

- A switch-lessartifact-free frequency-domain multiplexing (FDM) of liquid-gate GFET sensors for large-scale µECOG
- **Flicker-freelock-in** channel demodulation in digital domain
- Modular read-out IC (ROIC) architecture for 1024 channels
- Specific CMOS circuits for **low-power** operation
- An 8x8 test chip in 0.18-μm 6-metal CMOS technology

Partially funded by European Commission H2020-FETPROACT-2016-732032 and supported by TecnioSpring+ TECSPR16-1-0056 and CSIC-IP4SS-201650E019.

Scale and F.Serra-Graells 🗒 J.Cisneros-Fernández, M.Dei, L.Terés and F.Serra-Graells

23/24

Conclusions

To be tested in short...

Thanks for your attention!

Partially funded by European Commission H2020-FETPROACT-2016-732032 and supported by TecnioSpring+ TECSPR16-1-0056 and CSIC-IP4SS-201650E019.

🕈 CSIC المسرة المحالية المح

