SCSIC Com icrs

A 72- μ W 90-dB Wide-Range Potentiostatic CMOS $\Delta\Sigma$ Modulator with Flicker Noise Cancellation for Smart Electrochemical Sensors

J. Aymerich¹, M. Dei¹, L. Terés^{1,2}, F. Serra-Graells^{1,2}

¹Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC), Spain ²Universitat Autònoma de Barcelona, Spain

joan.aymerich@imb-cnm.csic.es

May 2019

1/22

J. Aymerich Gubern

Sensors Maket Vision

- Several organizations created visions for continued growth to trillion(s) sensors
 - \$15 trillion by 2022
- Electrochemical sensors are growing exponentially due to potential of miniaturization and mass production
 - Monolithic or hybrid integration onto CMOS platforms
 - Applications in biosensors, quality control, health care, ...

SCSIC Com ins

Expected sensor production growth per year

www.eenewsanalog.com

J. Aymerich Gubern

2 Potentiostatic $\Delta \Sigma$ Modulator architecture

3 Proposed wide-range potentiostat with 1/f noise cancellation

4 0.18- μm CMOS Design and Post-Layout simulations

SCSIC Com ைப்புக

1 Amperometric Electrochemical Sensors

2 Potentiostatic $\Delta\Sigma$ Modulator architecture

3 Proposed wide-range potentiostat with 1/f noise cancellation

4 0.18- μm CMOS Design and Post-Layout simulations

5 Conclusions

Amperometric Electrochemical Sensors

- ▲ Interaction with microorganisms.
- ▲ **Selectivity** by functionalization.
- Reduced speed and life time.
- **Potentiostatic** and **amperometric** operations.

Three electrodes:

- Working
- **R**eference
- **C**ounter

SCSIC Com jures

- Measurement independent of the R and C impedances.
- Current associated to the electrons involved in a redox process:

$$0 + e^- \stackrel{\text{red}}{\underset{\text{ox}}{\longleftarrow}} R$$

Electrochemical time constant: $\tau_{\rm ch} = R_{\rm ct}C_{\rm dl} \approx 10^{-1}{\rm s}$

Classic circuit implementation

Potentiostat

A₁ establishes the control loop to accomplish potentiostat operation.

 $V_{
m rw}=V_{
m pot}$ & $I_{
m r}\equiv 0$

Amperometry

SCSIC Com ல் ப்பு

A₂ converts sensor current to voltage for digitization and readout.

- Requires multiples OpAmps + ADC.
- Large area and power consumption.

1 Amperometric Electrochemical Sensors

2 Potentiostatic $\Delta \Sigma$ Modulator architecture

3 Proposed wide-range potentiostat with 1/f noise cancellation

4 0.18- μm CMOS Design and Post-Layout simulations

5 Conclusions

1^{st} order Potentiostatic $\Delta \Sigma M$

Sensor-on-the-loop

SCSIC Com jures

Behaviour similar to low-pass first-order single-bit CT $\Sigma\Delta M$ A/D modulator.

- Error current converted into voltage and shaped in frequency by the electrochemical sensor itself.
- High OSR easly obtained with kHz-range clock frequencies.
- Amperometric read-out through the $\Sigma\Delta M$ output q_{mod} by chemical input I_{sens} .

$\mathbf{1}^{st}$ order Potentiostatic $\Delta \Sigma M$

v Typical **tonal component** of 1^{st} order $\Delta \Sigma M$

 Limited potentiostatic range programmability (Vrw):
 Vpot only applies to the Reference Electrode (R).

TAC flicker noise not shaped by $\Delta \Sigma$ loop.

Noise floor in the signal band (BW < 1Hz) dominated by flicker noise.

SCSIC Com ins

1 Amperometric Electrochemical Sensors

- 2 Potentiostatic $\Delta\Sigma$ Modulator architecture
- 3 Proposed wide-range potentiostat with 1/f noise cancellation
- 4 0.18- μm CMOS Design and Post-Layout simulations

SCSIC Com icos

SCSIC Com icrs

From 1st to 2nd order $\Delta \Sigma M$

From electrochemical only τ to hybrid/mixed electrochemical/electronic τ_s

▲ **Tones** and pattern noise **suppression**.

From 1st to 2nd order $\Delta \Sigma M$

- From electrochemical only τ to hybrid/mixed electrochemical/electronic τ_s
- ▲ Tones and pattern noise suppression.
- Small-signal model

SCSIC Com ins

 2^{nd} order $\Delta \Sigma M$ requires stability compensation

▲ LHP Zero through feedforward path

SCSIC Com ins

Wide-range potentiostatic 2^{nd} order $\Delta \Sigma M$

Programmable-WE through Gm₁:

▲ Extend potentiostatic range virtually up to **double the supply voltage:**

$$V_{\rm rw} = V_{\rm potp} - V_{\rm potn}$$

Wide-range potentiostatic 2nd order $\Delta \Sigma M$

Programmable-WE through Gm₁:

▲ Extend potentiostatic range virtually up to **double the supply voltage:**

$$V_{\rm rw} = V_{\rm potp} - V_{\rm potn}$$

Small-signal model

SCSIC Com®icos

$$L_2(s) = -G_{\rm mf} \left(\frac{G_{\rm m1}R_{\rm ct} - 1}{G_{\rm m1}}\right) \frac{1 - \frac{\tau_1}{G_{\rm m1}R_{\rm ct} - 1}s}{1 + \tau_1 s} \frac{1 + \tau_2 s}{\tau_2 s}$$

Loop stability:

.

High power consumption on Gm₁ to push RHP zero to high frequencies:

$$\begin{array}{c} \checkmark \quad G_{\mathrm{m}1} \gg \frac{1}{R_{\mathrm{ct}}} \\ \downarrow \\ L_2(s) = L_1(s) = -R_{\mathrm{ct}}G_{\mathrm{m}f} \frac{1 + \tau_2 s}{(1 + \tau_1 s) \tau_2 s} \end{array}$$

Differential DAC wide-range potentiostatic 2nd order $\Delta \Sigma M$

$$V_{\rm rw} = V_{\rm potp} - V_{\rm potn}$$

SCSIC Com ல்முத

Differential DAC wide-range potentiostatic 2nd order $\Delta\Sigma M$

▲ Extend potentiostatic range virtually up to **double the supply voltage**

$$V_{\rm rw} = V_{\rm potp} - V_{\rm potn}$$

Small-signal model

SCSIC Com jures

- Loop stability:
- ▲ RHP self-canceled

both Ifsp,n are used in both quantization symbols.

▲ Gm1 only has to cope with Ifsp,n mismatching.

J. Aymerich Gubern

• $Gm_1 OTA$ switching.

CSIC Com icrs

▲ I_{fsp,n} noise currents are always bypassed to Gm₁ OTA or biphasically integrated into Vrw.

• Gm_1 OTA switching.

SCSIC Com ins

▲ I_{fsp,n} noise currents are always bypassed to Gm₁ OTA or biphasically integrated into Vrw.

UPC

• $Gm_1 OTA$ switching.

SCSIC Com ins

▲ I_{fsp,n} noise currents are always bypassed to Gm₁ OTA or biphasically integrated into Vrw.

UPC

J. Aymerich Gubern

Gm₁ OTA switching.

SCSIC Com ல்ப்பு

▲ I_{fsp,n} noise currents are always bypassed to Gm₁ OTA or biphasically integrated into Vrw.

UPC

• Gm_1 OTA switching.

CSIC Com ல் ப்பு

▲ I_{fsp,n} noise currents are always bypassed to Gm₁ OTA or biphasically integrated into Vrw.

UPC

J. Aymerich Guberr

• $Gm_1 OTA$ switching.

CSIC Com ல் ப்பு

▲ I_{fsp,n} noise currents are always bypassed to Gm₁ OTA or biphasically integrated into Vrw.

UPC

SAPPORO JAPAN MAY 26-29 2019

CSIC Com ins

Flicker Noise Cancellation

Optimum cancellation when qmod has equal probability of 1's and 0's quant. symbols (case of very weak chemical signals).

SAPPORO JAPAN MAY 26-29 2019

J. Aymerich Gubern

1 Amperometric Electrochemical Sensors

- 2 Potentiostatic $\Delta\Sigma$ Modulator architecture
- 3 Proposed wide-range potentiostat with 1/f noise cancellation
- 4 0.18- μm CMOS Design and Post-Layout simulations

5 Conclusions

SCSIC Com)ப்பு

Electrochemical sensor frontend CMOS layout

- 0.18µm 1P6M CMOS
 X-FAB technology (XH018).
- 480μm × 370μm (0.18mm²).
- On-Chip auxiliary modules.

SCSIC Com icrs

- **I**²**C** 4-wire bus interface.
- 1.8-V capless LDO core supply regulator.
- **Current** generator.
- **Vpotp,n** programmable sources.

18/22

 $100 \mu m$

Post-Layout Simulations

- 3-Vpp cyclic voltammetry example under 1.8-V voltage supply.
- VerilogA: Vrw-Isens DC look-up table based on a Cyclic Voltammetry.
- Third order Butterworth low-pass filter as digital decimator.
 2.5-Hz cutt-off freq.

UPC

SCSIC Com ins

Post-Layout Simulations

• Output spectrum comparison w/(a) and w/o(b) flicker cancelation technique.

- Weak input signal -65dB_{FS}
- ±100-nA full scale.
- **Oversampling ratio** 128:
 - **Sampling freq.** 256Hz
 - Bandwidth 1Hz

SCSIC Com icrs

🕷 CSIC Com லர்கு 🏢

Performance simulation results

Parameter		Value	Units
Input	max. full scale	± 900	nA
	full-scale prog.	100	nA/step
	bandwidth	1	Hz
Potentiostat	voltage range	± 1.65	V
	voltage prog.	6.3	mV/step
	voltage ripple	<20	$\mathrm{mV}_{\mathrm{pp}}$
	voltage offset $(\pm \sigma)$	10	$\mathrm{mV}_{\mathrm{rms}}$
ADC	$SNDR_{max} FS = \pm 100 nA$	70	dB
	$\pm 900 nA$	72	
	composite DR	90	dB
	oversampling ratio	128	
Power	supply voltage	1.8	V
	core consumption	72	$\mu \mathbf{W_{rms}}$
Silicon area		0.18	mm^2

2 Potentiostatic $\Delta \Sigma$ Modulator architecture

3 Proposed wide-range potentiostat with 1/f noise cancellation

4 0.18- μm CMOS Design and Post-Layout simulations

5 Conclusions

SCSIC Com ைப்பு

Conclusions

SCSIC Com ins

- **Compact architecture (0.18mm²)** thanks to the electrode-electrolyte interface used as an integrator stage in the $\Sigma\Delta M$ structure.
- Wide range (±1.5V) potentiostat programmability with minimalist analog circuits fully integrable in purely digital CMOS technologies.
- Improved dynamic range (90dB) thanks to Feedback DAC flicker noise cancellation mechanism.
- High resolution with sub kHz-range sampling frequencies (256Hz).

Applications and benefits

- ▶ **I**²**C** plug & play (power and comm.)
- ▶ 200µm x 200µm pads

CSIC Com ல் போ

- First trials of ASIC flip-chip on screen-printed flexible substrates
- Wearable for chemical sensing in sweat
 Food quality and safety

multipa

6U

C

ded. JO

Currently being measured...

Thanks for your attention!

Scale பில் கால

J. Aymerich Gubern

SCSIC Com Dicas 🏢

Comparison of CMOS Potentiostatic FRONTENDS

	This work	[2]	[3]	[4]	[5]	[6]	
ADC	SI CT	Analog	Dual	Dual IAF/	SC CT	SI CT	
architecture	$\Delta \Sigma M$	output	Slope	off-chip	$\Delta \Sigma M$	$\Delta \Sigma M$	
Technology	180	180	250	180	600	2500	nm
Supply	1.8	1.8	2.5	1.8	5	5	V
Pot. range	3	3.2	1.25	0	4	3	$V_{\rm pp}$
Full scale	± 0.1 to		± 0.25	± 11.6	± 0.1	+2 to	μA
	± 0.9					+32	
Bandwidth	1	500	2500	100	10	2	Hz
$\mathrm{SNDR}_{\mathrm{max}}$	70 @0.1nA	63	54	< 50*	68	71	dB
	72 @0.9nA						
DR	90	63	56	155	68	71	dB
Power	72	15800	>10000	5220*	1040	25	μW
Area	0.18		0.9	0.09	0.03	6.4	mm^2

*without including off-chip ADC.

SCSIC Com ins

Low-power rail-to-rail CMOS circuits

Wide Vrw programmability imposes wide input/output common-mode range for Gm₁ and Gm₂.

- Constant gm over the input common-mode voltage:
 - M1-M4 in weak inversion
 - Sum of tail currents **I**biasp,n constant

Low-power rail-to-rail CMOS circuits

Wide Vrw programmability imposes challenging input common-mode range for the quantizer.

$(V_{\mathrm{inp}}+V_{\mathrm{inn}})/2$	$q_{ m outp}$	$q_{ m outn}$	$q_{ m out}$
close to $V_{\rm DD}$	1	$\operatorname{sign}(V_{\operatorname{inn}} - V_{\operatorname{inp}})$	$\overline{q}_{ ext{outn}}$
otherwise	$\mathrm{sign}(V_{\mathrm{inp}}-V_{\mathrm{inn}})$	$\operatorname{sign}(V_{\operatorname{inn}}-V_{\operatorname{inp}})$	$q_{ ext{outp}} \cdot \overline{q}_{ ext{outn}}$
close to $V_{\rm SS}$	$\mathrm{sign}(V_{\mathrm{inp}}-V_{\mathrm{inn}})$	0	$q_{ m outp}$

- Complementary latched comparators:
 - q_{outp,n} digitally combined, giving priority to the one still being operational.
 - Zero-static power consumption

SIC Com ins 🕻

Post-Layout Simulations

Output spectrum for half full-scale input signal -6dBFS.

- ▶ ±100-nA full scale.
- **Oversampling ratio** 128:
 - **Sampling freq.** 256Hz
 - Bandwidth 1Hz
- SNDRmax

SCSIC Com icrs

- **70-dB** @ ±100nA FS
- **72-dB** @ ±900nA FS

Amperometric Electrochemical Sensors

Different detection methods are required:

Cyclic Voltammetry:

- Most widely used electrochemical technique.
- Rapid location of the redox potentials.
- Wide sweeping potentials

Chronoamperometry:

SCSIC Com ins

Vrw stepped and Isens monitored as a function of time.

J. Aymerich Gubern