

A Compact Switched-Capacitor Multi-Bit Quantizer for Low-Power High-Resolution Delta-Sigma ADCs

de Barcelona

J. Cisneros-Fernández¹, F. Serra-Graells^{1,2}, L. Terés^{1,2} and M. Dei¹

¹Institut de Microelectrònica de Barcelona, IMB-CNM(CSIC) ²Universitat Autònoma de Barcelona

Introduction

Reduced bandwidth (<1MHz) high dynamic</p> range (>90dB) $\Delta \Sigma Ms$ for portable smart sensing

V Power-aware $\Delta \Sigma M$ top-down design strategy?

ΔΣ Modulator Power Model

Min. dynamic power consumption at the first integrator stage:

$$P_{\min} = \underbrace{C_{i1} |\overline{\Delta V_{out1}}| f_s}_{I_{DD}} V_{DD} = \frac{C_{s1}}{a_1} \alpha_1 V_{DD}^2 OSR f_{nyq}$$

+ state-signal dynamics: $\alpha_1 \doteq \frac{|\overline{\Delta V_{out1}}|}{V_{DD}}$
$$SNDR_{peak}^{-1} = STNR^{-1} + SQNR^{-1}$$

$$\text{STNR} = \frac{A_{\text{peak}}^2}{2} \frac{C_{\text{s1}} \text{ OSR}}{kT} = \frac{\alpha_{\text{OL}}^2 V_{\text{DD}}^2}{8} \frac{C_{\text{s1}} \text{ OSR}}{kT}$$

+ input full-scale **loss**:
$$\alpha_{OL} \doteq \frac{2A_{peak}}{V}$$

Comparative examples of high-resolution single-loop $\Delta\Sigma$ Ms: single-bit third-order (a), single-bit fourth-order (b) and 3-bit second-order architecture (c).

▲ **Multi-bit** quantization with **low-order** noise shaping and moderate OSR can save x10 dynamic power consumption

Compact SC Multi-Bit Quantizer

The proposed flash topology is based on a ladder network of matched capacitors:

3

4

Implementation of the equivalent quantization thresholds:

SONR $| C_0$

- + Matching-ratio based design e.g. $\frac{C_{1\cdots4}}{C_0} = \{\frac{11}{16}, \frac{143}{144}, \frac{65}{48}, \frac{5}{24}\}$ for n=4 (9 levels)
- + Low signal **attenuation**

Half-circuit SC topology of the proposed multi-bit quantizer for the 9-level design case (a) and equivalent thresholds (b).

- **Compact** and **modular** circuit topology with straightforward scalability
- Resetting of all capacitors $C_{0\cdots 4}$ Input S/H, indiviual level shifting of $V_{0\cdots 3}$ and parallel quantization during ϕ_2 during ϕ_1
- ▲ All flash comparators latch at the **same input** threshold to simplify CMOS circuit optimization

5

▲ Robustness against technology mismatching ensures low sensitivity to layout granularity and parasitic capacitance

Design Example

- A 50-kHz 16-bit 9-level 2nd-order $\Delta \Sigma M$ case of study:
 - $+2-V_{pp}$ differential input full scale with $V_{\rm lo}=0.4V$ and $V_{\rm hi}=1.4V$ at 1.8-V supply
 - +12.8-MHz sampling rate (OSR=128)

using the proposed multi-bit quantizer.

- ► Quantizer $\frac{C_{1...4}}{C_0} = \{\frac{11}{16}, \frac{143}{144}, \frac{65}{48}, \frac{5}{24}\} \simeq \{\frac{3}{4}, \frac{4}{4}, \frac{5}{4}, \frac{1}{4}\}$ with unitary capacitance $C_u = 0.5 \text{pF}$
- \blacktriangle 4-element C_0 to weight the nested feedforward paths
- ▲ Good **SQNR matching** between behavioral and electrical simulations at transistor level

Conclusions

- \blacktriangle A **power model** for single-loop $\Delta \Sigma M$ to show the importance of **multi-bit quantization** when facing high-resolution ADC specifications
- A SC topology proposal for multi-bit flash quantizers exhibiting:

Output PSDs for the 9-level second-order SC $\Delta\Sigma$ M circuit example obtained from behavioral and electrical simulations at $-1dB_{FS}$ input.

- + **Compact** implementation
- + High circuit **modularity**
- + **Single** comparator CMOS design
- + Low-power operation
- + Compatibility with **multi-feedforward** $\Delta \Sigma M$ architectures
- + Compatibility with **SC low-power** techniques like clocked comparators and switched OpAmps

 \blacktriangle A practical 50-kHz 16-bit 9-level 2nd-order $\Delta\Sigma M$ **design example** with transistor-level simulations

Work partially funded by European Commission H2020-FETPROACT-2016-732032 and supported by TecnioSpring+ TECSPR16-1-0056