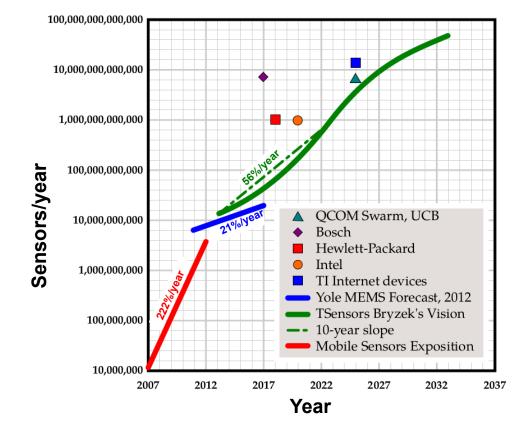
A 6.5-μW 70-dB 0.18-μm CMOS Potentiostatic Delta-Sigma for Electrochemical Sensors

Joan Aymerich, Michele Dei, Lluís Teres and Francisco Serra-Graells joan.aymerich@imb-cnm.csic.es

> Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)


> > July 2018

Sensors Market Vision

- Several organizations created visions for continued growth to trillion(s) sensors
 - **\$15 trillion by 2022**
- Electrochemical sensors are growing exponentially due to potential of miniaturization and mass production
 - Monolithic or hybrid integration onto CMOS platforms
 - Applications in biosensors, quality control, ...

CUU

Expected sensor production growth per year www.tsensorssummit.org

2 Potentiostatic $\Delta\Sigma$ Modulator architecture

3 Low-Power Circuit Implementation

4 0.18- μm CMOS Design Example

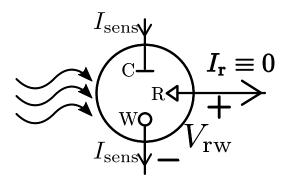
5 Conclusions

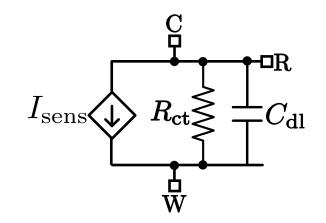
2 Potentiostatic $\Delta\Sigma$ Modulator architecture

3 Low-Power Circuit Implementation

4 0.18- μm CMOS Design Example

5 Conclusions




- ▲ Interaction with microorganisms
- ▲ **Selectivity** by functionalization
- **V** Reduced **speed** and **life** time
- Potentiostatic and amperometric operations
- Three electrodes:
 - Working
 - **R**eference
 - Counter

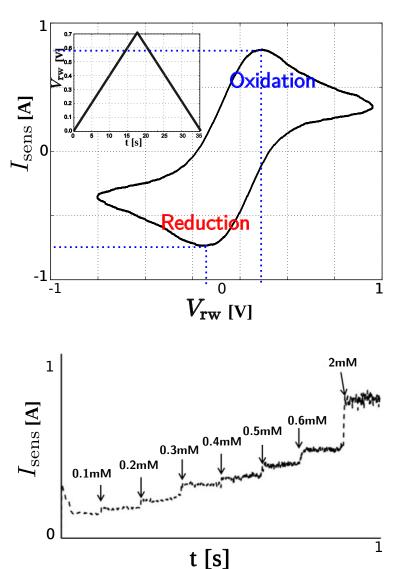
GUUS

- Measurement independent of the R and C impedances.
- Current associated to the electrons involved in a redox process

$$O + e^- \stackrel{\text{red}}{\underset{\text{ox}}{\longleftarrow}} R$$

Electrochemical time constant: $\tau_{\rm ch} = R_{\rm ct}C_{\rm dl} \approx 10^{-1}{\rm s}$

Different detection methods are required


Cyclic Voltammetry (CV)

- Sensor performance, rapid location of redox potentials, ...
- Sweeping electrode potential V_{rw} and measuring resulting current I_{sens}
- Potentiostat must sink/source current

Chronoamperometry (CA)

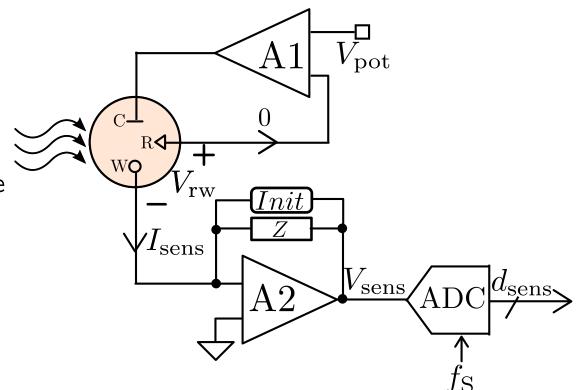
• V_{rw} fixed and I_{sens} monitored as a function of time while concentration is swept

کستار السکار کار

Classic circuit implementation

Potentiostat

A₁ establishes the control loop to accomplish potentiostat operation


 $V_{\rm rw} = V_{\rm pot}$ & $I_{\rm r} \equiv 0$

Amperometry

A₂ converts sensor current to voltage for digitization and readout

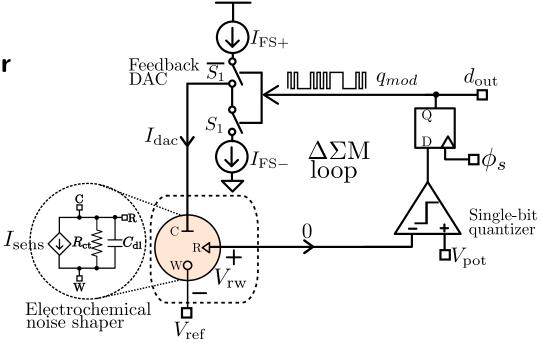
Requires multiples OpAmps + ADC

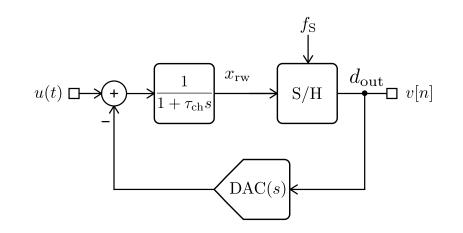
Large area and power consumption

2 Potentiostatic $\Delta\Sigma$ Modulator architecture

Composed of Complementation

4 0.18- μm CMOS Design Example


8/26


Potentiostatic $\Delta \Sigma M$

► Behaviour similar to low-pass first-order single-bit CT $\Sigma\Delta M$ A/D modulator

- Error current converted into voltage and shaped in frequency by the electrochemical sensor itself
- ▲ High oversampling ratios (OSR>100) can be easly obtained with kHz-range clock frequencies f_S
- Amperometric read-out through the $\Delta\Sigma$ modulation of output bit stream q_{mod} by chemical input I_{sens}

CUU

 $d_{\rm out}$

 $\mathbf{D} \phi_{\mathbf{s}}$

D

 $V_{\rm ref}$

 $d_{\operatorname{out}}_{\bullet \blacksquare v[n]}$

S/H

Single-bit

quantizer

 $V_{\rm int}$

 C_2

 q_{mod}

 Gm_2

 Gm_1

From 1st order to 2nd order $\Delta \Sigma M$

From electrochemical only au to **hybrid/mixed EC/electronic** $au_{\mathbf{S}}$

Electronic time constant C₂/Gm₂

Allows precise potentiostatic operation

Tones and pattern noise **suppression**

- Feed-Forward through Gm₁
 - Stabilize the loop

CUUS

[5] J. Aymerich, M. Dei, L. Terés and F. Serra-Graells, "Design of a Low-Power Potentiostatic Second-Order CT Delta-Sigma ADC for Electrochemical Sensors, " 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)

 $u(t) \square$

Electrochemical noise shaper

 $I_{\rm sehs}$

Feedback \overline{S}

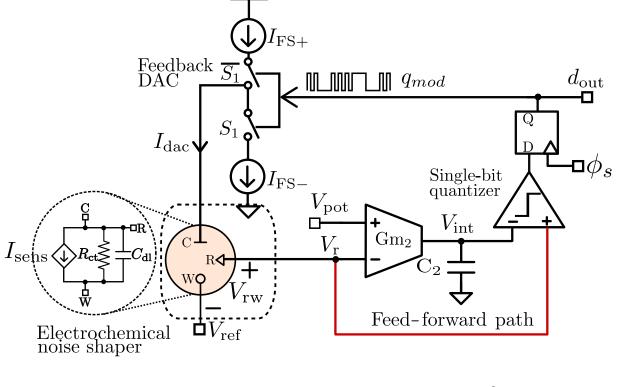
 $I_{\rm dac}$

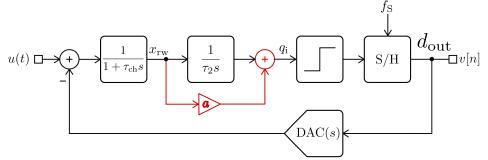
 S_1

 $V_{\rm ref}$

 $1 + \tau_{\rm ch} s$

 $l_{\rm FS}$


 $V_{\rm pot}$


T28

From 1st order to 2nd order $\Delta \Sigma M$

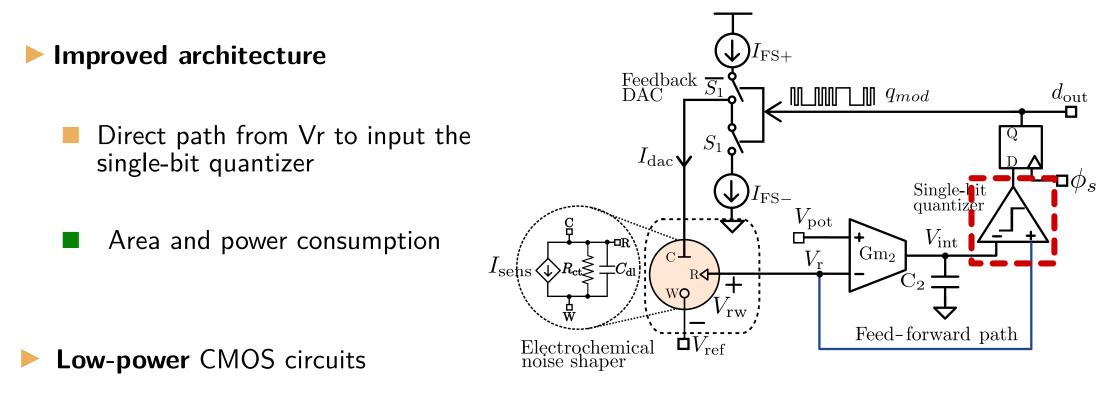
Improved architecture

- Direct path from Vr to input the single-bit quantizer
- Area and power consumption

Low-power CMOS circuits

- Large flexibility on the selection of potentiostatic voltage
 - Wide common-mode voltage range

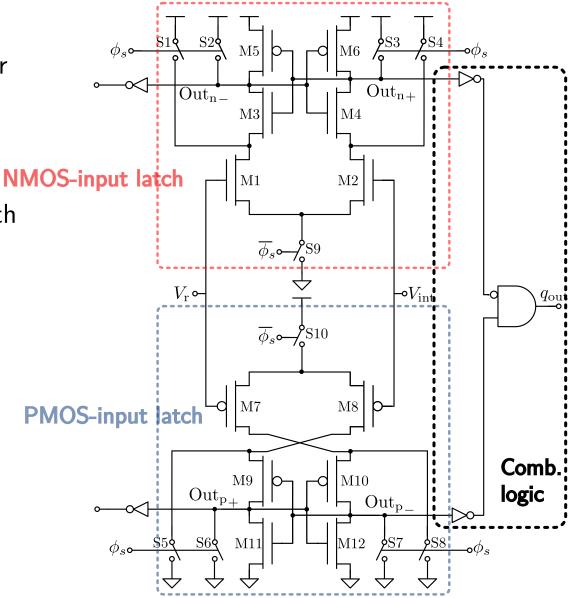
2 Potentiostatic $\Delta \Sigma$ Modulator architecture


3 Low-Power Circuit Implementation

4 0.18- μm CMOS Design Example

5 Conclusions

From 1st order to 2nd order $\Delta \Sigma M$

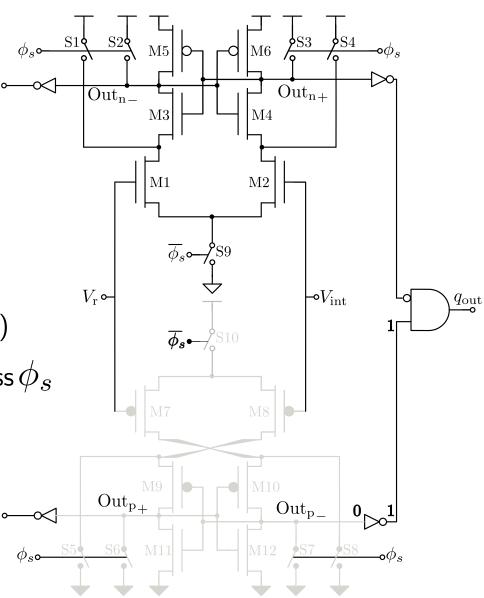


- **Large flexibility** on the selection of **potentiostatic voltage**.
 - Single-bit quantizer: Wide input common-mode voltage range

Transconductance Gm₂: Wide input/output common-mode voltage range

Single-bit quantizer

- Rail-to-rail complementary latch comparator
 - High-input impedance
 - Zero-static power consumption
 - Combinational logic allows to merge both NMOS-PMOS-input comparators



14/26

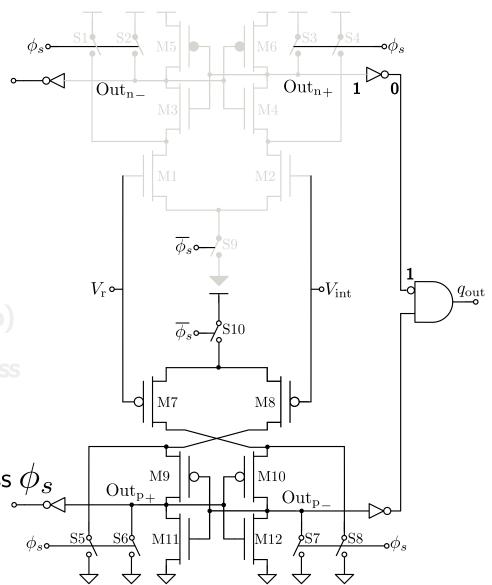
Single-bit quantizer

Rail-to-rail complementary latch comparator

- High-input impedance
- Zero-static power consumption
- Combinational logic allows to merge both NMOS-PMOS-input comparators
- PMOS OFF: Input common-mode > (Vdd-VTHp)
 - lacksquare Outp nodes remain at the negative rail regardless ϕ_s

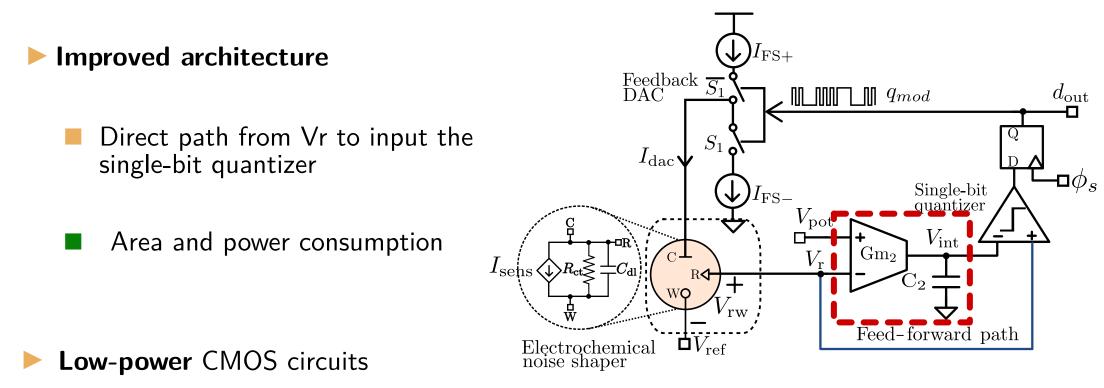
Single-bit quantizer

Rail-to-rail complementary latch comparator


- High-input impedance
- Zero-static power consumption
- Combinational logic allows to merge both NMOS-PMOS-input comparators

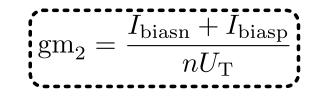
PMOS OFF: Input common-mode > (Vdd-VTHp)

• Outp nodes remain at the negative rail regardless


NMOS OFF: Input common-mode < (VTHn)

lacksim Outn nodes remain at the positive rail regardless ϕ_s

From 1st order to 2nd order $\Delta \Sigma M$


Large flexibility on the selection of potentiostatic voltage.

Single-bit quantizer: Wide input common-mode voltage range

Transconductance Gm₂: Wide input/output common-mode voltage range

Gm-C Integrator

- **Constant gm** over the input common-mode voltage
 - Avoid variations in the electronic integrator time constant
 - M1 M4 operated in weak inversion

Sum of the tail currents constant

1:1M6M8 $\forall I_{\text{biasp}}$ M11 V_{b3} M10 $^{M4}V_{r}$ V_{pot}o M3 $- V_{int}$ M2 M1 V_{ref} V_{b1} M5M13 M12 $\overline{\Psi}_{ m biasn}$ G_{m_2} V_{b2} M14M15 $M_{\rm bias}$

Wide output swing

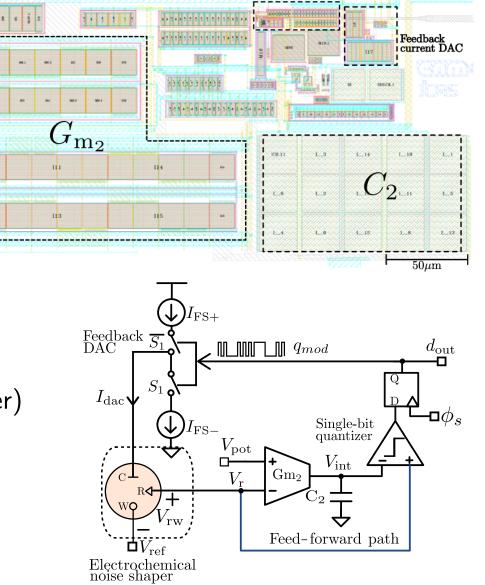
 $2V_{\rm ov} < V_{\rm int} < V_{\rm dd} - 2V_{\rm ov}$ $V_{\rm ov} \longrightarrow Overdrive voltage$

CNM®)CPS

2 Potentiostatic $\Delta\Sigma$ Modulator architecture

- 3 Low-Power Circuit Implementation
- 4 0.18- μm CMOS Design Example

5 Conclusions


Low-power 0.18- μm CMOS Design

- Layout area: 0.063mm²
- Gm-C integrator occupy most of the area
 - to minimize offset, i.e potentiostatic error (Vr Vpot)
 - slow integrator time constant (sampling frequency @ 1kHz)

Large Feedback DAC

To minimize low-frequency noise. (DAC noise added directly to the input, it is not shaped by the delta-sigma loop-filter)

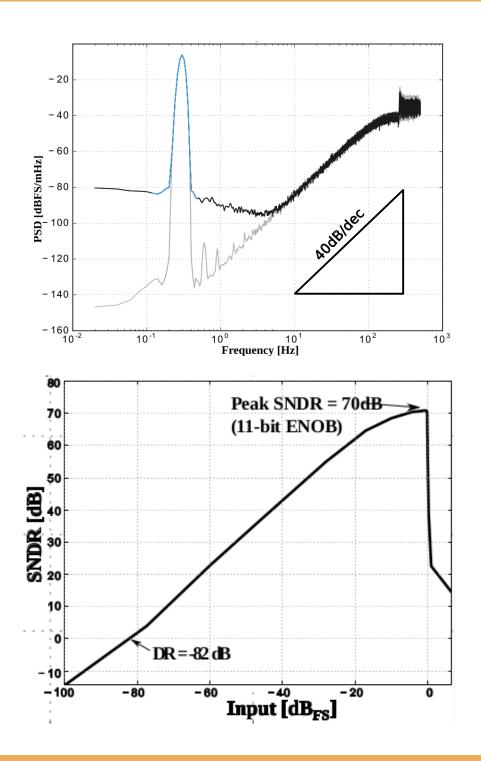
Ongoing run XFAB-XH018

on-chip

current source

18/26

ເກີອາກິ

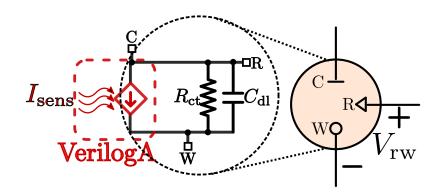

Post-Layout Simulations

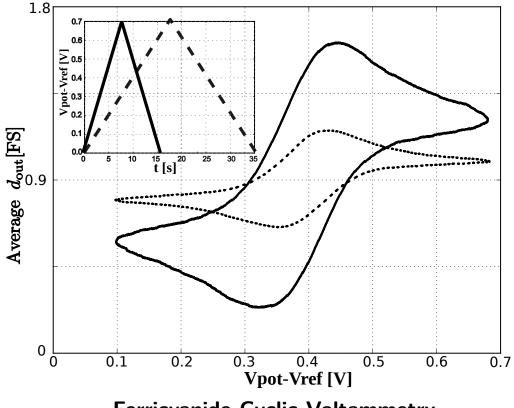
Output spectrum comparison w/ and w/o electronic transient

- $f_S = 1k Hz$
- $\bullet \tau_{\rm ch} = 0.15 \mathrm{s}(OSR \approx 500)$
- $I_{\rm FS} = 1.25 \mu A$
- 70-dB dynamic range for 1.25uA current full scale. (280pA RMS, noise)
- Higher resolution is achievable enlarging the area of the feedback DAC

AREA PENALTY AGAINST DYNAMIC RANGE.

DAC + bias current Area estimation	Total area increased	SNDR	ENOB
$1400 \mu m^2$	—	70 - dB	11
$5600 \mu m^2$	7%	75.5 - dB	12
$22400 \mu m^2$	33%	81 - dB	13




ເພື່ອ

Post-Layout Simulations

Cyclic Voltammetry

- **Triangular waveform** is applied to the reference electrode while the sensor current is measured simultaneously
- **VerilogA model**: Vrw-Isens DC look-up tables based on two experimental measurements of ferricyanide CVs

Ferricyanide Cyclic Voltammetry

ເພື່ອກູ

Simulation Results

Performance simulation results

Parameter	Symbol	Value	Unit
Supply voltage	$V_{\rm DD}$	1.8	V
Potential range	$V_{\rm pot} - V_{\rm ref}$	± 0.7	V
Input full scale	$I_{\rm FS}$	± 0.2 to ± 2	μA
Oversampling ratio	OSR	500	—
Sampling frequency	$f_{ m S}$	1	kHz
Layout area	—	0.0063	mm^2
SNDR at $1.25 \mu A_{FS}$	SNDR	70	$^{\mathrm{dB}}$
Power at $2\mu A_{FS}$	P_{D}	6.5	$\mu { m W}$

Power consumption mainly determined by feedback current DAC

 $P_{DAC} = 5\mu W$

Rest of circuit blocks $P_{DAC} = 1.5 \mu W$

2 Potentiostatic $\Delta \Sigma$ Modulator architecture

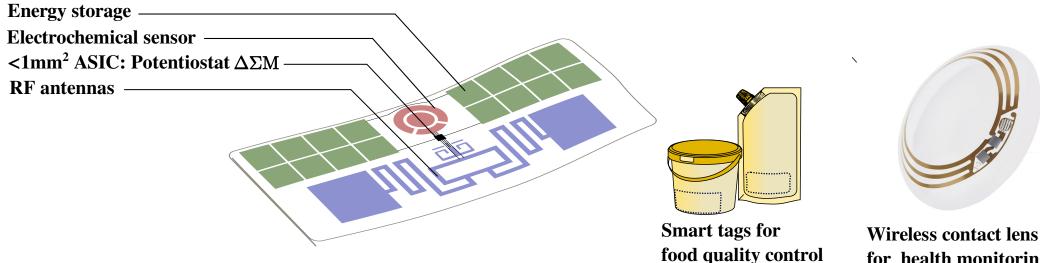
3 Low-Power Circuit Implementation

4 0.18- μm CMOS Design Example

5 Conclusions

Conclusions

- **Compact architecture** thanks to the electrode-electrolyte interface used as an integrator stage in the $\Delta\Sigma$ structure
- Minimalist analog circuits fully integrable in purely digital CMOS technologies
- **High resolution** with kHz-range clock frequencies: SNDR = 70dB@1kHz
- **Low-power** $(1.5\mu W)$ operation compared to sensor consumption



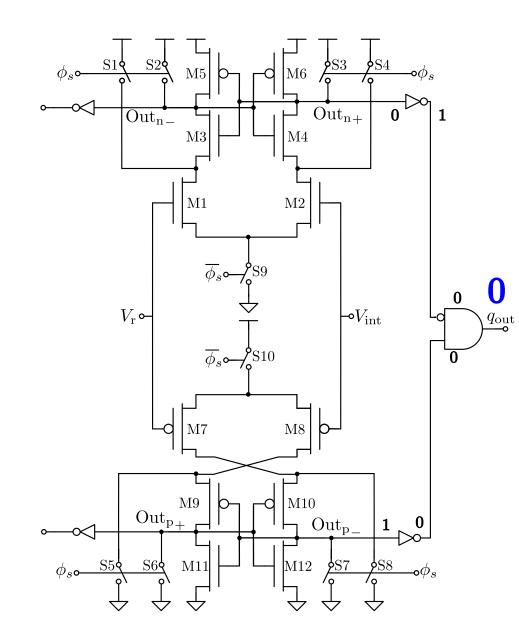
Conclusions

- **Compact architecture** thanks to the electrode-electrolyte interface used as an integrator stage in the $\Delta\Sigma$ structure
- **Minimalist** analog circuits fully integrable in purely digital CMOS technologies
- **High resolution** with kHz-range clock frequencies: SNDR = 70 dB@1kHz
- **Low-power (** 1.5μ W**)** operation compared to sensor consumption

Future work

GNM®JCPS

for health monitoring



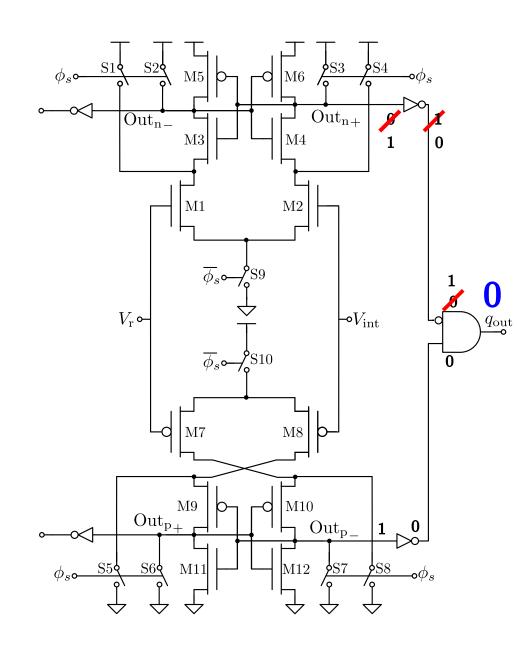
Single-bit quantizer

Rail-to-rail complementary latch comparator

- Zero-static power consumption
- Combinational logic allows to merge both NMOS-PMOS-input comparators
- PMOS and NMOS ON

 $\blacksquare \mathsf{Vint} > \mathsf{Vr}$

10/26


Single-bit quantizer

Rail-to-rail complementary latch comparator

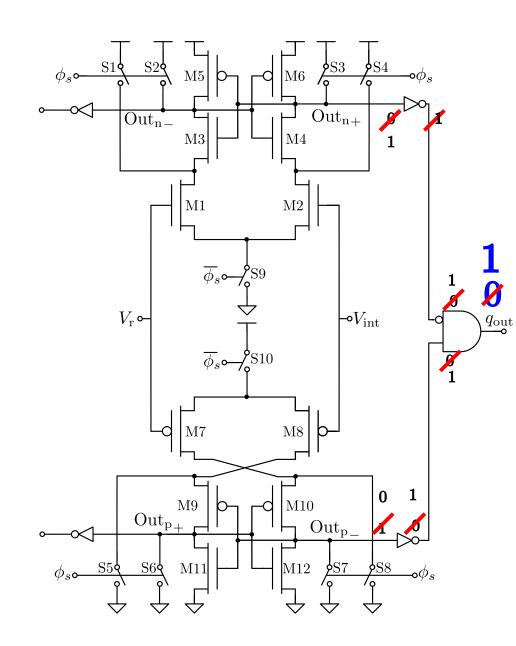
- Zero-static power consumption
- Combinational logic allows to merge both NMOS-PMOS-input comparators
- PMOS and NMOS ON

Vint > Vr

 $\blacksquare \mathsf{Vint} < \mathsf{Vr}$

ເກີສູ

26/26


Single-bit quantizer

Rail-to-rail complementary latch comparator

- Zero-static power consumption
- Combinational logic allows to merge both NMOS-PMOS-input comparators
- PMOS and NMOS ON

Vint > Vr

 \blacksquare Vint < Vr

Power Consumption Comparison

						[This work]
Technology	0.18 µm	0.5 µm	0.13 µm	0.18 µm	2.5 µm	0.18 µm
ADC structure	Current to frequency	Delta-sigma	Single-Slope	Delta-sigma	Delta-sigma	Delta-sigma
Sampling frequency	-	100 kHz	1.25 kHz	-	1 kHz	1 kHz
FS current	150 nA	16 µA	600 nA	1.65 µA	2 µA	2 µA
Power consumption	3 µW	241 µW	56 µW	920 µW	25 µW	5 µW
@ supply voltage	@ 1.2 V	@ 1.2 V	@ 2 V	@ 1.8 V	@ 5 V	@ 1.8 V

