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Electrochemical sensors are growing 
exponentially due to potential of 
miniaturization and mass production
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Several organizations created visions
for continued growth to trillion(s) sensors

Applications in biosensors, 
quality control, ...

Expected sensor production growth per year

$15 trillion by 2022

www.tsensorssummit.org

Monolithic or hybrid integration
onto CMOS platforms 
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Amperometric Electrochemical Sensors

Electrochemical time constant:

Measurement independent of the 
R and C impedances.

Three electrodes: 
 

Interaction with microorganismsInteraction with microorganisms
Selectivity by functionalization

Reduced speed and life time
Potentiostatic and  amperometric
operations

Current associated to the electrons
involved in a redox process
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Amperometric Electrochemical Sensors

Cyclic Voltammetry (CV)

Different detection methods are required
 

Chronoamperometry (CA)

Sensor performance,
rapid location of redox potentials, ...

      fixed and        monitored as a 
function of time while concentration is swept 
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Sweeping electrode potential      and 
measuring resulting current 

Oxidation

Reduction

Potentiostat must sink/source current
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Classic circuit implementation

A1 establishes the control loop to
accomplish potentiostat operation

&

Requires multiples OpAmps + ADC

A2 converts sensor current to voltage 
for digitization and readout

Large area and power consumption

Potentiostat

Amperometry
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Behaviour similar to low-pass first-order
single-bit CT           A/D modulator 

Error current converted into voltage 
and shaped in frequency by the 
electrochemical sensor itself

High oversampling ratios (OSR>100)
can be easly obtained with kHz-range
clock frequencies fS 
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Potentiostatic

Amperometric read-out through the 
       modulation of output bit stream       
 by chemical input
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From electrochemical only    to hybrid/mixed 
EC/electronic
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Allows precise potentiostatic operation

Feed-Forward through 
Stabilize the loop

Electronic time constant

[5] J. Aymerich, M. Dei, L. Terés and F. Serra-Graells, ”Design of a Low-Power 
Potentiostatic Second-Order CT Delta-Sigma ADC for Electrochemical Sensors,
” 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)

 

 

Tones and pattern noise suppression
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Direct path from Vr to input the 
single-bit quantizer

 

 

Improved architecture

Area and power consumption

Low-power CMOS circuits

Large flexibility on the selection of potentiostatic voltage

Wide common-mode voltage range
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Single-bit quantizer: Wide input common-mode voltage range

Transconductance       : Wide input/output common-mode voltage range

Large flexibility on the selection of potentiostatic voltage.

 

 

Direct path from Vr to input the 
single-bit quantizer

Improved architecture

Area and power consumption

Low-power CMOS circuits
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Single-bit quantizer

Rail-to-rail complementary latch comparator 

Combinational logic allows to merge both
NMOS-PMOS-input comparators

Zero-static power consumption

Comb.
logic

High-input impedance

PMOS-input latch

NMOS-input latch
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Single-bit quantizer

PMOS OFF: Input common-mode > (Vdd-VTHp)

Outp nodes remain at the negative rail regardless 

Rail-to-rail complementary latch comparator 

Combinational logic allows to merge both 
NMOS-PMOS-input comparators

Zero-static power consumption

 High-input impedance
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Single-bit quantizer

NMOS OFF: Input common-mode < (VTHn)

Outn nodes remain at the positive rail regardless 

PMOS OFF: Input common-mode > (Vdd-VTHp)

Outp nodes remain at the negative rail regardless 

Rail-to-rail complementary latch comparator 

Combinational logic allows to merge both 
NMOS-PMOS-input comparators

Zero-static power consumption

 High-input impedance
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From 1st order to 2nd order

 

 

 

Single-bit quantizer: Wide input common-mode voltage range

Transconductance       : Wide input/output common-mode voltage range

Large flexibility on the selection of potentiostatic voltage.

 

Direct path from Vr to input the 
single-bit quantizer

Improved architecture

Area and power consumption

Low-power CMOS circuits
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Gm-C Integrator

 

Constant gm over the input 
common-mode voltage
 

Sum of the tail currents constant

Avoid variations in the electronic 
integrator time constant
M1 - M4 operated in weak inversion

Wide output swing
Overdrive voltage
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Gm-C integrator occupy most of the area

Low-power 0.18-     CMOS Design

to minimize offset, i.e potentiostatic 
error (Vr - Vpot)
slow integrator time constant
(sampling frequency @ 1kHz)

Large Feedback DAC
To minimize low-frequency noise.
(DAC noise added directly to the input, 
it is not shaped by the delta-sigma loop-filter)

Ongoing run XFAB-XH018
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Post-Layout Simulations
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Output spectrum comparison 
w/ and w/o electronic transient 

40
dB
/d
ec

70-dB dynamic range for 1.25uA 
current full scale. (280pA RMS, noise)

Higher resolution is achievable enlarging the
area of the feedback DAC
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Post-Layout Simulations

Cyclic Voltammetry

Triangular waveform is applied to the 
reference electrode while the sensor 
current is measured simultaneously

VerilogA model: Vrw-Isens DC look-up 
tables based on two experimental 
measurements of ferricyanide CVs
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Simulation Results
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Performance simulation results

Power consumption mainly determined by feedback current DAC 

Rest of circuit blocks
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Conclusions

High resolution with kHz-range clock frequencies: 

Compact architecture thanks to the electrode-electrolyte interface used as an 
integrator stage in the       structure

Minimalist analog circuits fully integrable in purely digital CMOS technologies

Low-power (        ) operation compared to sensor consumption 

Conclusions
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Conclusions

High resolution with kHz-range clock frequencies: 

Compact architecture thanks to the electrode-electrolyte interface used as an 
integrator stage in the       structure

Minimalist analog circuits fully integrable in purely digital CMOS technologies

Low-power (        ) operation compared to sensor consumption 

Conclusions

Energy storage
Electrochemical sensor
<1mm2 ASIC: Potentiostat 
RF antennas

Smart tags for 
food quality control

Wireless contact lens 
for  health monitoring

Future work
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Single-bit quantizer

 
 PMOS and NMOS ON

Vint > Vr

Rail-to-rail complementary latch comparator 

Combinational logic allows to merge both 
NMOS-PMOS-input comparators

Zero-static power consumption
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Single-bit quantizer

 
 PMOS and NMOS ON

Rail-to-rail complementary latch comparator 

Combinational logic allows to merge both 
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Vint > Vr

 
 

Vint < Vr  
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Power Consumption Comparison


