A 128×128-pix 4-kfps 14-bit Digital-Pixel PbSe-CMOS Uncooled MWIR Imager

<u>R. Figueras</u>¹, J.M. Margarit¹, G. Vergara², V. Villamayor², R. Gutiérrez-Álvarez², C. Fernández-Montojo², L. Terés¹ and F. Serra-Graells^{1,3}

¹Institut de Microelectrònica de Barcelona IMB-CNM(CSIC) ²New Infrared Technologies S.L. ³Universitat Autònoma de Barcelona UAB

roger.figueras@imb-cnm.csic.es

May 2018

Good (CSIC) IEEE ISCAS 2018 Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

- **1** Introduction & Current State
- 2 Digital Pixel Sensor Circuits
- **3** Imager Integration in 0.18-µm CMOS Technology
- 4 Post-Layout Simulation Results
- **5** Conclusions

COS Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

2/26

1 Introduction & Current State

- **2** Digital Pixel Sensor Circuits
- **3** Imager Integration in 0.18-µm CMOS Technology
- **4** Post-Layout Simulation Results
- **5** Conclusions

COS Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

IR Imagers Detector

- Thermal microbolometers
 - LWIR
 - Low-cost CMOS integration
 - Room-temperature
 - Low sensitivity
 - Limited frame rates

- Quantum-well IR photodetectors
 - SWIR
 - Expensive hybrid integration
 - Cryogenic cooling
 - High sensitivity
 - High speed

IR Imagers ROIC

DPS requirements

- Digital output
- Low-crosstalk
- Reduced noise bandwidth
- Dynamic range enhancement
- Reduced pixel pitch
- Low power consumption

- DPS implementation
 - Massive parallel A/D conversion
 - In-pixel references generation
 - Challenging design

CMOS-ROIC for an IR Imager using PbSe detector

Current State

ROIC samples available ready for detector post-processing steps.
To be packaged and integrated to the camera.

Presented work is actually the ROIC final version.
A previous version is already in production.

66mm × 62mm × 62mm

New Infrared Technologies S.L. <u>http://www.niteurope.com/</u>

Main applications:

<u>Cnm</u>@)[[•5

- Industrial process monitoring and control.
- Defense and security.

- **1** Introduction & Current State
- 2 Digital Pixel Sensor Circuits
- **3** Imager Integration in 0.18-µm CMOS Technology
- **4** Post-Layout Simulation Results
- **5** Conclusions

COM SIGNA Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

Digital Pixel Sensor Circuits

PbSe Detector

- 2-4 Mohm; DC biasing ~ 1 V dark current ~ 0.25-0.5 µA
- Input signal full scale ~ 2 μA
- Parasitic capacitance 0.2-1 pF

ROIC DPS

- In-pixel A/D conversion
 - Low power IAF modulator (up to 20Meps)
 - Digital counter (14-bit)
- Ring oscillator
- Local generation of reference voltages and biasing currents
- ▶ Individual (or global) power-on \rightarrow ROI

M. Dei, R. Figueras et al., "Highly Linear Integrate-and-Fire Modulators with Soft Reset for Low-Power High-Speed Imagers", ISCAS 2017

GAM @ JEFS Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

S. Sutula et al., "Variable-Mirror Amplifier: A New Family of Process-Independent Class-AB Single Stage OTAs for Low-Power SC Circuits", ISCAS 2016

COM Trans I Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

tro Pixel (

Voltage reference & biasing current generator

- Reduced crosstalk
- All-MOS
- Low-power (WI operation)
- Temperature compensation

R. Figueras et al., "All-MOS Voltage References with Thermal Compensation", DCIS 2013

- **1** Introduction & Current State
- **2** Digital Pixel Sensor Circuits
- **3** Imager Integration in 0.18-µm CMOS Technology
- **4** Post-Layout Simulation Results
- **5** Conclusions

COM SIGNA Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

Pixel CMOS Results Conclus

14/26

128×128-pix MWIR Imager CMOS layout floorplan

- ► XFAB 0.18-µm 1P6M CMOS tech.
- 10mm×10mm | 124 pads
- Multi-voltage supply
 - Analog circuits: 1.8V
 - Digital circuits: 1.2V
 - Digital I/O and ESD: 3.3V
- Circuit blocks:
 - FPA

CUU:

- Peripheral circuits
- In-chip decoupling capacitors
- > 10 M transistors
- Global FPA column data buses
- Single/double I/O bus: 14/28-bit
- Clock speed: 50 MHz

PbSe-CMOS postprocessing align marks

15/26

DPS Cell CMOS layout floorplan

- 50 µm-pitch
- Separated analog/digital supplies
- 14-bit digital counter
- Low-power IAF modulator
- Overloading and overflow control
- In-pixel voltage references and biasing currents generation
- Individual disabling flag
- Continuous PbSe layer
 - Diamond pattern contacts (20µm)

🗲 🖬 🍈 أَلَّ الله الله Roger Figueras i Bagué et al., IMB-CNM(CSIC) 🛛 IEEE ISCAS 2018

- **1** Introduction & Current State
- **2** Digital Pixel Sensor Circuits
- **3** Imager Integration in 0.18-µm CMOS Technology
- 4 Post-Layout Simulation Results
- **5** Conclusions

COM SICOS Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

usions 17/26

IAF Modulator transfer function

- Moderate technology variation (±15%)
- Linear up to 20 Meps
- Overloading protection

itro Pixel CMOS Res

Results Conclusions 18/26

AFE Noise

- Flicker components domination
- CMOS: not the limiting factor

Com JCAS Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

Conclusions 19/26

Voltage reference variability

- No inter-pixel crosstalk
- Very low dispersion (±1.2%)
- Reduced FPN

Com JCAS Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

Pixel power consumption

- Dynamic power consumption below 50% of the static value
- Detector optimized
- Noticeable effect of integrator saturation

Dynamic range vs. frame rate

<1 kfps: nominal 14-bit dynamic range limited by the digital counter</p>

GAA (CSIC) IEEE ISCAS 2018 Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

22/26

State-of-the-Art

	[5]	[6]	[7]	[1]	This work
FPA pitch	640×512	82×80	640×512	80×80	128×128
Pixel pitch	50 µm	35 µm	17 µm	135 µm	50 µm
CMOS tech.	0.35 µm	0.18 µm	0.5 µm	0.35 µm	0.18 µm
IR tech.	InGaAs	µbol.	µbol.	VPD PbSe	VPD PbSe
IR wavelength	SWIR	LWIR	LWIR	MWIR	MWIR
Integration	hybrid	monolithic	monolithic	monolithic	monolithic
Pixel output	digital	analog	analog	digital	digital
Imager output	12 bit	12 bit	14 bit	10 bit	14 bit
Max. frame rate	60 fps	120 fps	60 fps	2000 fps	4000 fps
Supply voltage	3.3 V	1.8 V	3.3/5 V	3.3 V	1.2/1.8/3.3 V
Static power	n.a.	50 mW	n.a.	1 µW/pix	10 µW/pix

ເທີ Roger Figueras i Bagué et al., IMB-CNM(CSIC) **IEEE ISCAS 2018**

- **1** Introduction & Current State
- **2** Digital Pixel Sensor Circuits
- **3** Imager Integration in 0.18-µm CMOS Technology
- **4** Post-Layout Simulation Results
- **5** Conclusions

COM SIGNATION Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

Presented Work

- CMOS-ROIC for an uncooled IR Imager using a PbSe Detector.
- Integrated in the XFAB 0.18-µm CMOS technology.
- ▶ 128×128-Digital-pixels FPA.
- Industrial prototype ready to be integrated to the camera.

Contributions

- In-pixel A/D conversion: low-power & highly-linear IAF modulator.
 - ▶ 20 Meps.
 - Overloading protection.
- CMOS low-noise circuits (not the limiting factor).
- In-pixel references generation.
 - Very low dispersion (1.2%).
 - Global / individual pixel disabling.
- Low-power consumption: static ~ 10μ W/pix; dynamic < 50% of static.
 - Efficient class-AB OpAmp.
 - MOS WI operation.
 - IAF modulator with novel soft-reset mechanism.
- High output dynamic range.
 - 14-bit at 1 kfps; 10-bit at 4 kfps.
- Compact design: 50µm-pitch pixel.

...thanks for your attention!

Com IEEE ISCAS 2018 Roger Figueras i Bagué et al., IMB-CNM(CSIC) IEEE ISCAS 2018

State-of-the-Art

- [5] Y. M. Jo, D. H. Woo, S. G. Kang, and H. C. Lee, "Very Wide Dynamic Range ROIC With Pixel-Level ADC for SWIR FPAs", IEEE Sensors J., vol. 16, no. 19, pp. 7227–7233, Oct 2016.
- [6] Y. Park, J. Yun, D. Park, S. Kim, and S. Kim, "An Uncooled Microbolometer Infrared Imager With a Shutter-Based Successive- Approximation Calibration Loop", IEEE Trans. VLSI Syst., vol. 26, no. 1, pp. 122–132, Jan 2018.
- [7] D. Liu, W. Lu, Z. Chen, Y. Zhang, S. Lei, and G. Tan, "A 14- bit Differential-Ramp Single-Slope Column-Level ADC for 640512 Uncooled Infrared Imager", in Proceedings of the IEEE International Symposium on Circuits and Systems, May 2016, pp. 1922–1925.
- [1] J. M. Margarit, G. Vergara, V. Villamayor, R. Gutierrez-Alvarez, C. Fernandez-Montojo, L. Teres, and F. Serra-Graells, "A 2 kfps Sub- W/Pix Uncooled-PbSe Digital Imager With 10 Bit DR Adjustment and FPN Correction for High-Speed and Low-Cost MWIR Applications", IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2394–2405, Oct 2015.