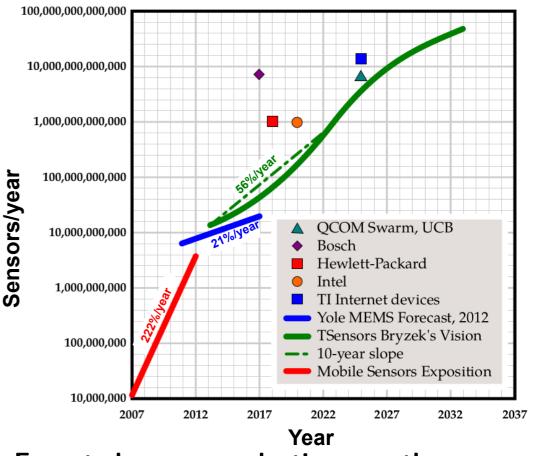
Design of a Low-Power Potentiostatic Second-Order CT Delta-Sigma ADC for Electrochemical Sensors

Joan Aymerich Gubern joan.aymerich@imb-cnm.csic.es


Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

June 2017

Trillion-Sensor Vision

- Several organizations created visions for continued growth to trillion(s) sensors
 - **\$15 trillion by 2022**
- Electrochemical sensors are growing exponentially due to potential of miniaturization and mass production
 - Monolithic or hybrid integration onto CMOS platforms
 - Applications in biosensors, quality control, ...

Expected sensor production growth per year

www.tsensorssummit.org

ເພື່ອງເບີຍ

2 Potentiostatic $\Delta\Sigma$ Modulator architecture

3 Proposed architecture

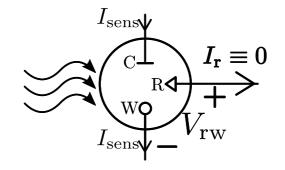
4 Design methodology and trade-offs

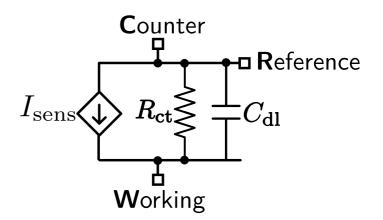
5 Conclusions

ເພື່ອງເພ

1 Amperometric Electrochemical Sensors

2 Potentiostatic $\Delta\Sigma$ Modulator architecture


3 Proposed architecture


4 Design methodology and trade-offs

5 Conclusions

Amperometric Electrochemical Sensors

- ▲ Interaction with microorganisms
- ▲ **Selectivity** by functionalization
- Reduced speed and life time
- Potentiostatic and amperometric operations
- **Three electrodes:**
 - Working
 Reference
 Counter
- Measurement independent of the R and C impedances.

- Electrochemical time constant: $\tau_{\rm ch} = R_{\rm ct}C_{\rm dl} \approx 10^{-1}{\rm s}$
 - **Rct** = charge-transfer resistance
 - CdI = double-layer capacitance

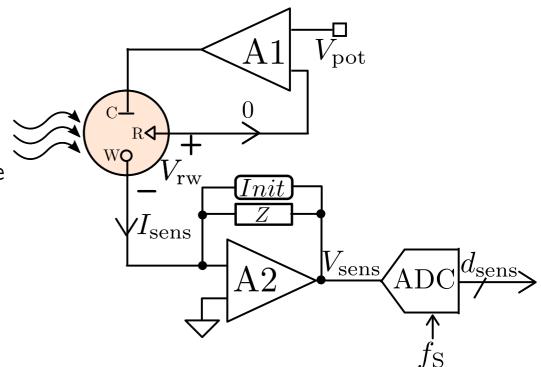
ເພ

J. Aymerich Gubern PRIME 2017

Classic circuit implementation

Potentiostat

A₁ establishes the control loop to accomplish potentiostat operation


 $V_{
m rw}=V_{
m pot}$ & $I_{
m r}\equiv 0$

Amperometry

A₂ converts sensor current to voltage for digitization and readout

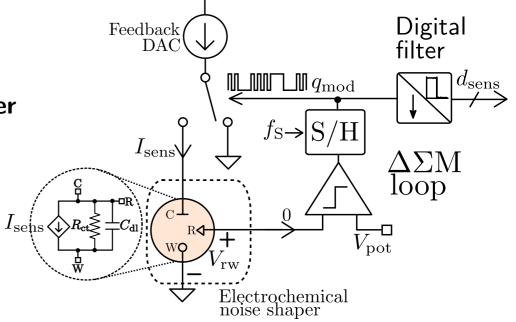
Requires multiples OpAmps + ADC

Large area and power consumption

2 Potentiostatic $\Delta\Sigma$ Modulator architecture

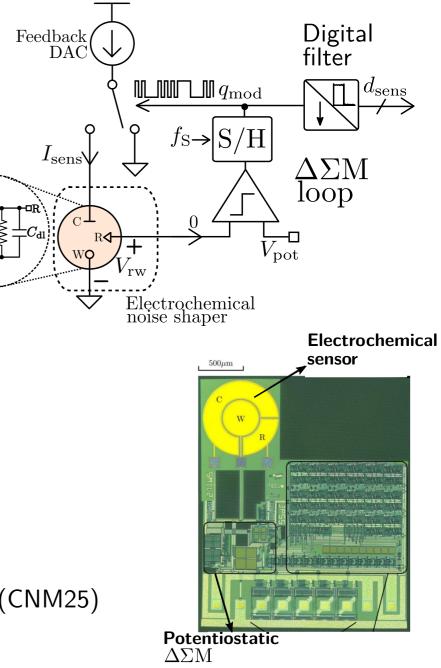
3 Proposed architecture

4 Design methodology and trade-offs


5 Conclusions

J. Aymerich Gubern PRIME 2017

Potentiostatic $\Delta \Sigma M$

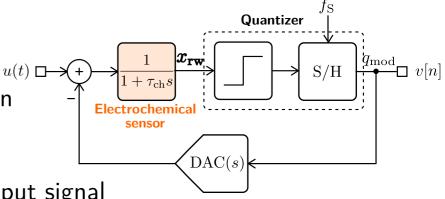

- ▶ Behaviour similar to low-pass first-order single-bit CT $\Sigma\Delta M$ A/D modulator
- Error current converted into voltage and shaped in frequency by the electrochemical sensor itself
- ▲ High oversampling ratios (OSR>100) can be easly obtained with kHz-range clock frequencies f_S
- Amperometric read-out through the $\Delta\Sigma$ modulation of output bit stream $q_{\rm mod}$ by chemical input $I_{\rm sens}$

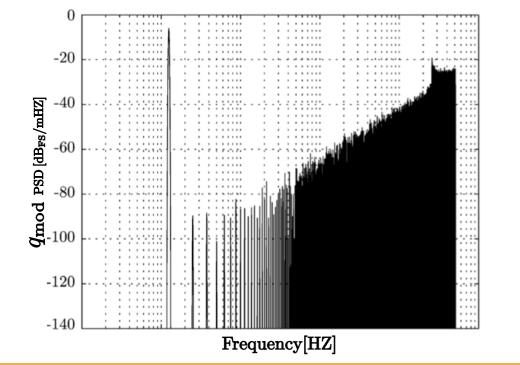
Potentiostatic $\Delta \Sigma M$

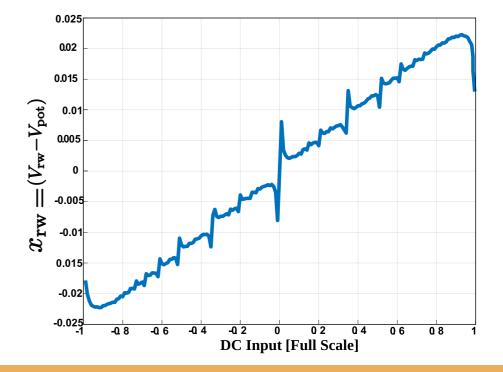
- ▶ Behaviour similar to low-pass first-order single-bit CT $\Sigma\Delta M$ A/D modulator
- Error current converted into voltage and shaped in frequency by the electrochemical sensor itself
- ▲ High oversampling ratios (OSR>100) can be easly obtained with kHz-range clock frequencies f_S
- Amperometric read-out through the $\Delta\Sigma$ modulation of output bit stream $q_{\rm mod}$ by chemical input $I_{\rm sens}$

Monolithic CMOS integration Inexpensive 2.5µm in-house CMOS technology (CNM25) developed by ICAS group at IMB-CNM(CSIC)

ເດີຍເອີ


 $I_{\rm sehs}$


Potentiostatic $\Delta \Sigma M$


v Typical **tonal component** of 1^{st} order $\Delta \Sigma M$

- Quantization error and input signal correlation
- Potentiostat operation not well-defined

Potentiostatic error \mathcal{X}_{rw} influenced by the input signal

ເກີ

1 Amperometric Electrochemical Sensors

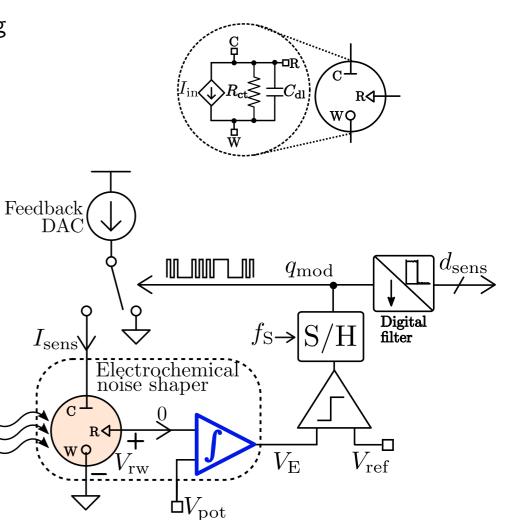
2 Potentiostatic $\Delta \Sigma$ Modulator architecture

3 Proposed architecture

4 Design methodology and trade-offs

5 Conclusions

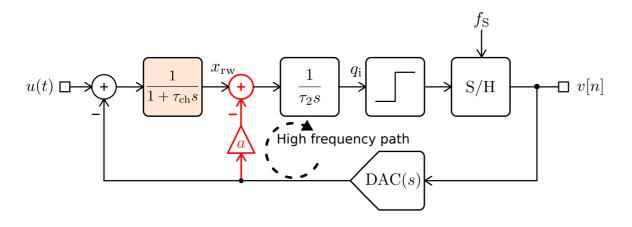
Proposed amperometric potentiostatic $\Sigma\Delta M$


Incremental work: Addition of electronic integration

▲ **Higher resolution:** 2nd order noise shaping

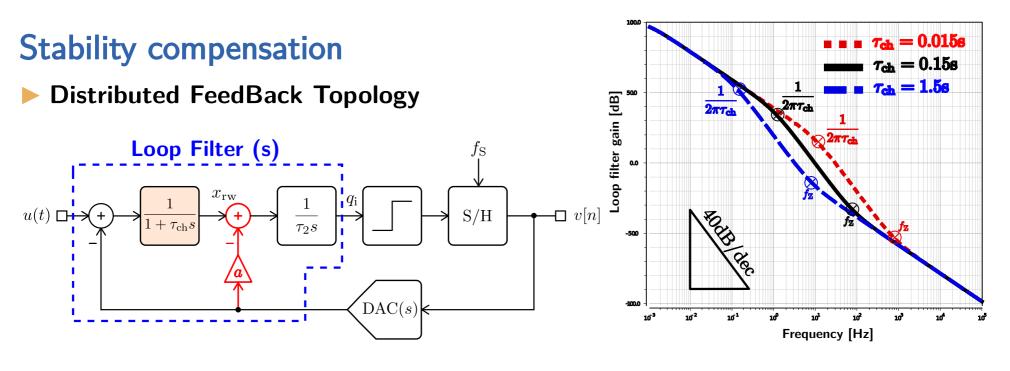
- ▲ Idle tones attenuation
- ▲ Potentiostatic operation well-defined ■ Electronic integrator forces $V_{rw} = V_{pot}$

▼ New design trade-offs!


- **Stability compensation** is required
- A zero must be added in the loop filter to compensate the phase shift

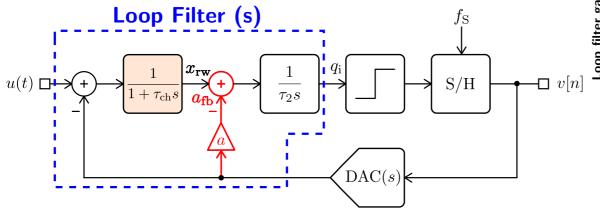
12/26

COM JUS

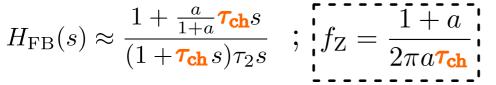

Distributed FeedBack Topology

Loop Filter Zero frequency location

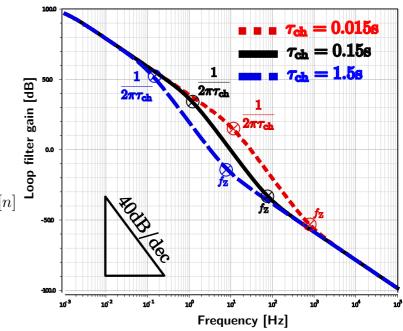
$$H_{\rm FB}(s) \approx \frac{1 + \frac{a}{1+a} \boldsymbol{\tau_{\rm ch}} s}{(1 + \boldsymbol{\tau_{\rm ch}} s) \boldsymbol{\tau_2} s} \quad ; \quad f_{\rm Z} = \frac{1+a}{2\pi a \boldsymbol{\tau_{\rm ch}}}$$

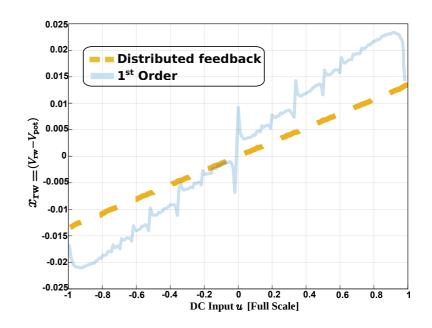


Loop Filter Zero frequency location


$$H_{\rm FB}(s) \approx \frac{1 + \frac{a}{1+a} \boldsymbol{\tau_{\rm ch}} s}{(1 + \boldsymbol{\tau_{\rm ch}} s) \tau_2 s} \quad ; \quad f_{\rm Z} = \frac{1+a}{2\pi a \boldsymbol{\tau_{\rm ch}}}$$

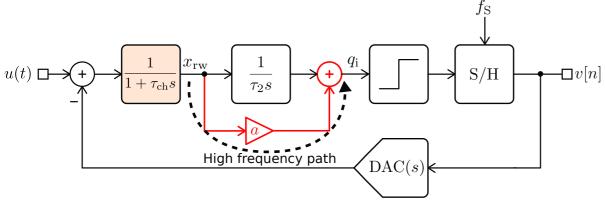
▼ f_Z depends on sensor time constant τ_{ch} ■ $\downarrow \tau_{ch} \rightarrow \uparrow f_Z$ Leading to instability!!


Loop Filter Zero frequency location

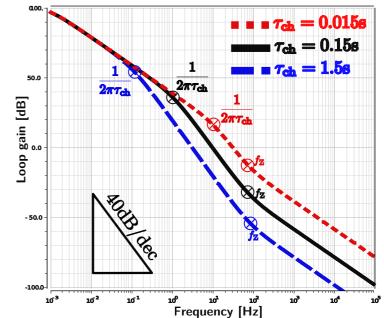


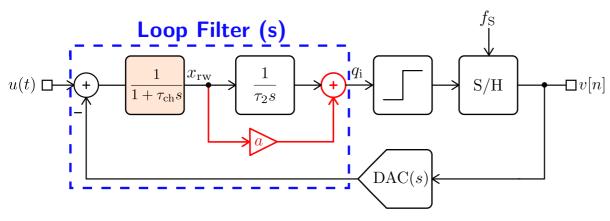
▼ f_Z depends on sensor time constant τ_{ch} ■ $\downarrow \tau_{ch} \rightarrow \uparrow f_Z$ Leading to unstability!!

Potentiostatic voltage strongly influenced by the sensor input signal


 $x_{\rm rw} = a_{\rm fb}$

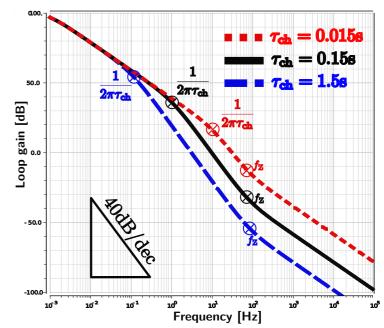
ເດັກສູອ ກໍ່ເກັນ

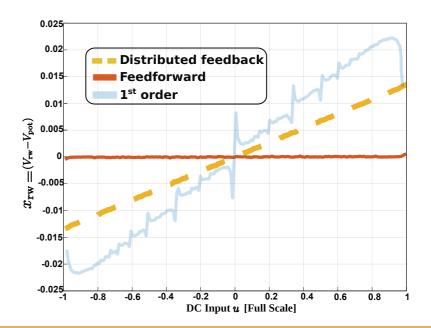

Feed-Forward Topology


Loop Filter Zero frequency location

$$H_{\rm FF}(s) = \frac{1 + a\tau_2 s}{(1 + \tau_{\rm ch} s)\tau_2 s}; \quad f_{\rm Z} = \frac{1}{2\pi a\tau_2}$$

Variations in the sensor time constant do not compromise the stability of the system!


Feed-Forward Topology



Loop Filter Zero frequency location

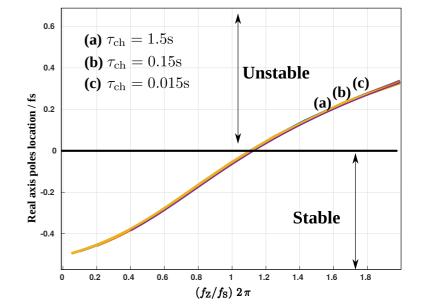
$$H_{\rm FF}(s) = \frac{1 + a\tau_2 s}{(1 + \tau_{\rm ch} s)\tau_2 s}; \quad f_{\rm Z} = \frac{1}{2\pi a\tau_2}$$

- Variations in the sensor time constant do not compromise the stability of the system!
- **Electronic integrator forces** its input x_{rw} to have **DC zero component**.

ເກີອາວັເກີອ

1 Amperometric Electrochemical Sensors

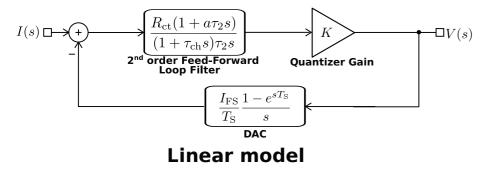
2 Potentiostatic $\Delta \Sigma$ Modulator architecture

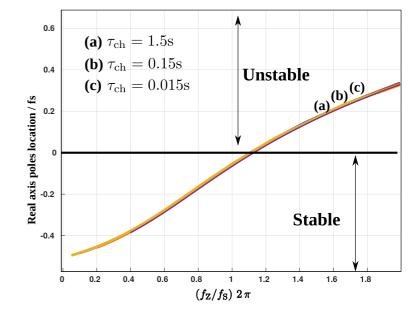

3 Proposed architecture

4 Design methodology and trade-offs

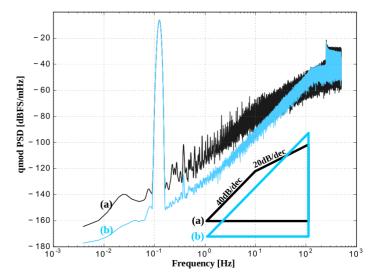
5 Conclusions

Linear model



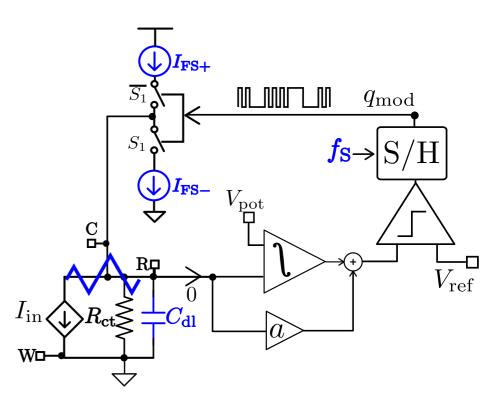


- Stability region as a function of f_z/f_s
 - **Root locus** analysis: Closed-loop poles moves as quantizer gain changes
 - Stability condition: $f_{
 m Z} < f_{
 m S}/(2\pi)$


Small-Signal Stability Analysis

Linear model

- Stability region as a function of f_z/f_s
 - **Root locus** analysis: Closed-loop poles moves as quantizer gain changes
 - Stability condition: $f_{
 m Z} < f_{
 m S}/(2\pi)$
- Power Spectrum as function of zero location
 - More stable (More 1st order behaviour) Less aggressive noise shaping
 - Less safety stability margin Better noise shaping

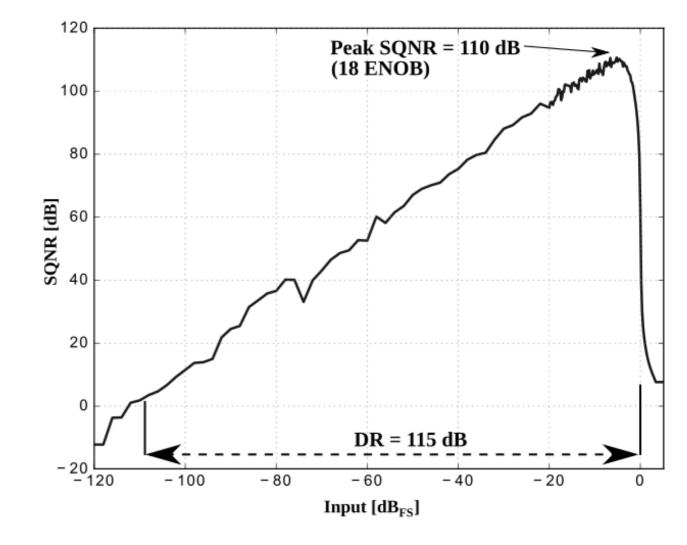

ເກີອາເປັນ

J. Aymerich Gubern PRIME 2017

Potentiostat Voltage Ripple

- Voltage ripple may be required to be kept below certain minimum
- Feedback current DAC (I_{FS}) charges/discharges Cdl
- T_s is the only degree of freedom to minimize ripple
 - **(** C_{dI} and **I**_{FS} are fixed by the application)

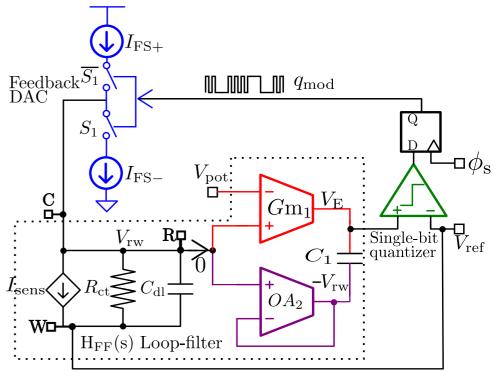
$$\frac{\Delta V_{\rm rw}}{V_{\rm rw}} \propto \frac{I_{\rm FS} T_S / C_{\rm dl}}{I_{\rm FS} R_{\rm ct}} = \frac{T_{\rm S}}{\tau_1}$$


SQNR vs input signal

Top-level simulation

 $f_S = 1k \text{Hz}$

- $\bullet \tau_{\rm ch} = 0.15 \mathrm{s}(OSR \approx 500)$
- $f_{\rm Z}/f_{\rm S} = 1/(4\pi)$


 $I_{\rm FS} = 2\mu A$

Low-power circuit implementation

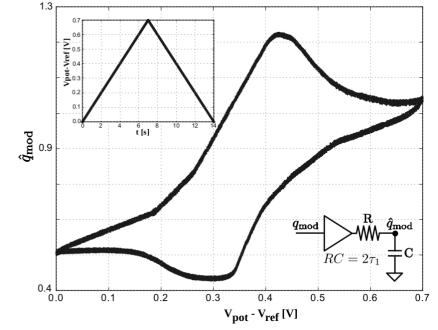
- Flexible and modular to be mapped into different CMOS technologies
- Electronic integrator: Gm₁-C₁
- Feed-Forward path
- Latch comparator for 1-bit quantization
- **D-type flip-flop** for S/H
- Feedback current DAC
 - Power consumption mainly determined by current DAC FS, allowing chemical reaction take place

ເກີ

Simulation Results

Performance simulation results

Power consumption mainly determined by current DAC FS $P_{DAC} = 4.7 \mu W$


Rest of circuit blocks P = 370 nW

0.18µm CMOS technology

Parameter	Symbol	Value	Unit
Supply voltage	$V_{\rm DD}$	1.8	V
Potential range	$V_{\rm pot} - V_{\rm ref}$	± 0.7	V
Input full scale	$I_{\rm FS}$	± 2	$\mu \mathrm{A}$
Oversampling ratio	OSR	500	—
Sampling frequency	$f_{ m S}$	1	m kHz
Loop-filer zero location	$f_{\rm Z}/f_{ m S}$	$1/\pi$	_
Potentiostatic ripple	$\Delta V_{ m rw}$	11.6	mVrms
Power at $2\mu A_{FS}$	P_{D}	5.1	μW

Cyclic Voltammetry

- Method for studying electrochemical reactions
- Triangular waveform is applied to the Reference-electrode, while the sensor current is measured simultaneously.
- VerilogA model

Ferrocyanide Cyclic Voltammetry

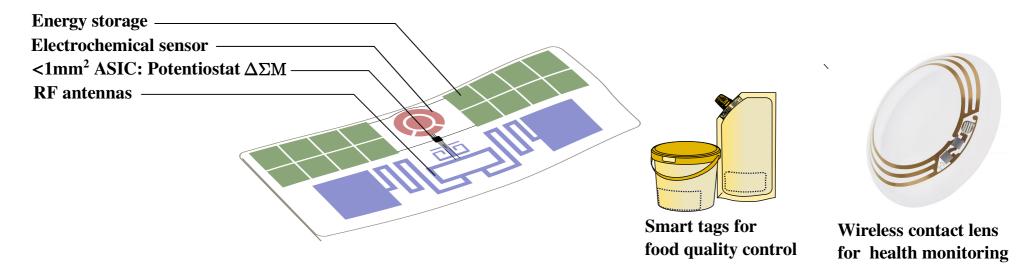
1 Amperometric Electrochemical Sensors

2 Potentiostatic $\Delta \Sigma$ Modulator architecture

3 Proposed architecture

4 Design methodology and trade-offs

5 Conclusions


Conclusions

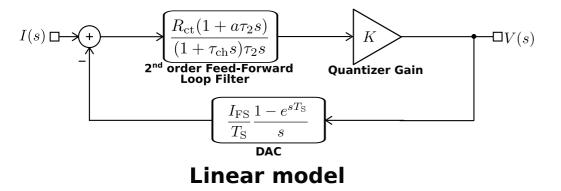
- **Compact architecture** thanks to the electrode-electrolyte interface used as an integrator stage in the $\Delta\Sigma$ structure
- Minimalist analog circuits fully integrable in purely digital CMOS technologies
- **High resolution** with kHz-range clock frequencies: SQNR = 110dB @ 1kHz
- \triangleright Ultra low-power (370nW) operation compared to sensor consumption

Conclusions

- **Compact architecture** thanks to the electrode-electrolyte interface used as an integrator stage in the $\Delta\Sigma$ structure
- **Minimalist** analog circuits fully integrable in purely digital CMOS technologies
- **High resolution** with kHz-range clock frequencies: SQNR = 110dB @ 1kHz
- **Ultra low-power (**370nW**)** operation compared to sensor consumption

Future work

Power Consumption Comparison

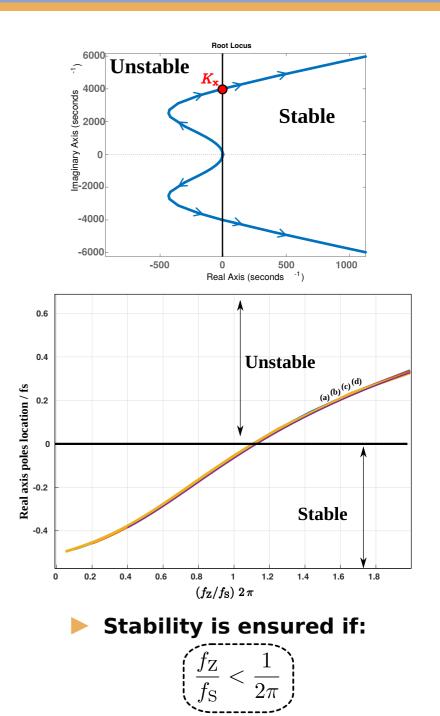

Technology	0.18 µm	0.5 µm	0.13 µm	0.18 µm	2.5 µm	0.18 µm	
ADC structure	Current to frequency	Delta-sigma	Single-Slope	Delta-sigma	Delta-sigma	Delta-sigma	
Sampling frequency	-	100 kHz	1.25 kHz	-	1 kHz	1 kHz	
FS current	150 nA	16 µA	600 nA	1.65 μA	2 μΑ	2 µA	
Power consumption	3 µW	241 µW	56 µW	920 μW	25 µW	5 µW	
@ supply voltage	@ 1.2 V	@ 1.2 V	@ 2 V	@ 1.8 V	@ 5 V	@ 1.8 V	

[This work]

Small-Signal Stability Analysis

Linear model

Root Locus


- Stability region as a function of K
- Worst-case scenario when K is maximum

From stable situation

Sweep input: 0 to FS to find maximum quantizer gain Kmax (worst-case)

Stability region as a function of f_z/f_s

Sweep f_S/f_Z and check if Kmax is within the stable region

ເພື່ອກູ