Low-power potentiostat 2" Order CT XA ADC for ECS

Design of a Low-Power Potentiostatic
Second-Order CT Delta-Sigma ADC
for Electrochemical Sensors

Joan Aymerich Gubern
joan.aymerich@imb-cnm.csic.es

Integrated Circuits and Systems (ICAS)
Instituto de Microelectrénica de Barcelona, IMB-CNM(CSIC)

June 2017

J. Aymerich Gubern PRIME 2017



Low-power potentiostat 2" Order CT XA ADC for ECS

Trillion-Sensor Vision

Several organizations created visions

for continued growth to trillion(s) sensors

$15 trillion by 2022

Electrochemical sensors are growing
exponentially due to potential of
miniaturization and mass production

Monolithic or hybrid integration
onto CMOS platforms

Applications in biosensors,
quality control, ...
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Amperometric Electrochemical Sensors

A Interaction with microorganisms

A Selectivity by functionalization

V¥V Reduced speed and life time

V¥V Potentiostatic and amperometric

operations Counter
o-0 Reference
Three electrodes: I sens R Cal
Working
Reference .
Counter Working

_ ] Electrochemical time constant:
Measurement independent of the Ty = ROy & 10~ g

R and C impedances.
Rct = charge-transfer resistance

Cdl = double-layer capacitance
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Classic circuit implementation

» Potentiostat

= A; establishes the control loop to
accomplish potentiostat operation

‘/rw=Vpot & IrEO

» Amperometry

« A, converts sensor current to voltage
for digitization and readout

V¥V Requires multiples OpAmps + ADC

SGHS;

V Large area and power consumption
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Potentiostatic A M

Feedback D igital
DAC filter

MMM Grmod dseng
Behaviour similar to low-pass first-order < Y N

single-bit CT YAM A/D modulator ;L fs=|S/H
AYM

| P R T00
Error current converted into voltage Ry -: p
' Lo Carll ¢
and shaped in frequency by the sehs D a S .

electrochemical sensor itself

.

...........

Electrochemical
noise shaper

A High oversampling ratios (OSR>100)
can be easly obtained with kHz-range
clock frequencies f

A Amperometric read-out through the AX
modulation of output bit stream dmod
by chemical input Iy,
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DAC filter

LM M ¢moa dseng
< * l ——>

Ry

. P T loop
Error current converted into voltage L
Lk O 1] ——

Potentiostatic AYM Feedback% Digital

Behaviour similar to low-pass first-order
single-bit CT AM A/D modulator

and shaped in frequency by the

. ) +
electrochemical sensor itself Vo | Vpor
-------- ﬁléctro}(l:hemical
. . . noise shaper
A High oversampling ratios (OSR>100) Electrochemical
can be easly obtained with kHz-range sensor

clock frequencies f

A Amperometric read-out through the AX
modulation of output bit stream dmod
by chemical input I,

Monolithic CMOS integration
Inexpensive 2.5um in-house CMOS technology (CNM25)
developed by ICAS group at IMB-CNM(CSIC)

Potentiostatic

AYM
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Potentiostatic A M
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V Potentiostat operation not well-defined | /DAC(S)|
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Proposed amperometric potentiostatic YAM

Incremental work: Addition of electronic integration

A Higher resolution: 2" order noise shaping

A ldle tones attenuation

A Potentiostatic operation well-defined
M Electronic integrator forces Viw = Vpot

Feedback
DAC
¥ New design trade-offs! dsens
m Stability compensation is required Dligital
filter
B A zero must be added in the loop
filter to compensate the phase shift
m
V}ef
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Stability compensation
» Distributed FeedBack Topology

é . Iﬂ[ S/H ]——u v[n]

T A
¢ High frequency path

R { DAC
== (5)
\_

» Loop Filter Zero frequency location

Hen(s) 1+ 5=Tens 1 I+a !
S) =~ | — '
B (1 4 72,8) 728 ’ ! 2T QTch
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H : mmn T = 0.0158
Stability compensation Ru gy A
Distributed FeedBack Topology T
Loop Filter (s) fs §° n
e
ﬂ[ S/H ]——u o[n] =
“ Frequency [Hz]

(1 4+ 7chs)T2s

HFB(S) ~

V fz depends on sensor time constant Tch
B |7ch —» {fz Leading to instability!!

J. Aymerich Gubern PRIME 2017



Low-power potentiostat 2" Order CT XA ADC for ECS

1H 1 mmn Th = 0.0158
Stability compensation o i
Distributed FeedBack Topology kel m— T =11
= 1
£ oo
Loop Filter (s) fs o Q.fﬂ‘*
¢ -
8 N\_*
—Elv[n]"-sw .fz\\ .
%
T e Tw e W W e W w
Frequency [Hz]
Hon(s) ~ LY TE@S T Tda] o
FB(S) =~ y ' Jz = - |
(1 —+ Tch 8)7'28 ’ : 27TCLTch : 0.01"

V fz depends on sensor time constant Tch
B |7ch - 1fz Leading to unstability!!

V Potentiostatic voltage strongly
influenced by the sensor input signal

B T = am

02 0 02 04 06 08 1

DC Input  [Full Scale]
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Q00.

Stability compensation = = u 7 = 0.0158

T = 0.158
= mTh = 1.58

» Feed-Forward Topology

8
o

&
Loop gain [dB]

| ﬁ[ S/H ]——m[n]

DAC
< (s)
\ a00n! _ | — | ‘ -

P O T v
Frequency [Hz]

-50.0

» Loop Filter Zero frequency location

1+ ams ' 1
H - Cofy =
Fr (5) (1 4 7ch )72 ’ :fz

m Variations in the sensor time constant
do not compromise the stability of the system!
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Stability compensation
Feed-Forward Topology
Loop Filter (s) |

—Lv[n]

1 4 ams . E- B 1
(14 Tens)Tas 2maty

HFF(S) =

m Variations in the sensor time constant
do not compromise the stability of the system!

A Electronic integrator forces its input Lrw
to have DC zero component.

J. Aymerich Gubern
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0.6

Small-Signal Stability Analysis
(@) 7ch = 1.5s

» Linear model | )7 = 0.15s

(©) Ten = 0.015s Unstable

©

o
S

[Rct(l + arys)
I(s) - L(l + Ten$)Tas

2" order Feed-Forward Quantizer Gain
Loop Filter

—V (s)

o

[ Ips 1 — esTs ]
B
DAC

Linear model

o
)

Real axis poles location / fs

Stable

.
I
IS

It L L L L L L L L " L
0 02 04 06 08 1 12 14 16 18

» Stability region as a function of f,/fg (Gt
~ Root locus analysis: Closed-loop poles moves as quantizer gain changes

= Stability condition: fz < fs/(2)
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0.6

Small-Signal Stability Analysis
(@) 7ch = 1.58

Linear model al () Ten =0.15s

(¢) Ten = 0.015s Unstable

)

/(al

Rt (1 + aras) 0.2
(1 + 7ens)Tas

2" order Feed-Forward Quantizer Gain
Loop Filter

[ Ipsl—GSTS ]
e
DAC

Linear model

IV (s)

-0.2

Real axis poles location / fs

Stable

-04

L L L L L L L L L " L
0 02 04 06 08 1 12 14 16 18

Stability region as a function of f,/fg (fa/fs) 27
Root locus analysis: Closed-loop poles moves as quantizer gain changes

Stability condition: fz < fs/(27)

Power Spectrum as function of zero location

[] More stable (More 15t order behaviour)
Less aggressive noise shaping

qmod PSD [dBFS/mHz]
|
©
o

Less safety stability margin ﬁ ,
Better noise shaping I — l
107 102 107" Frequ;l?c"ymz] 10" 102 10°
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Potentiostat Voltage Ripple

= Voltage ripple may be required to be kept
below certain minimum

= Feedback current DAC (lgs)
charges/discharges Cdl

= Tg is the only degree of freedom to
minimize ripple

w (Cq and lgg are fixed by the application)

AV . IpsTs/Car  Tg

Viw Irs Rey i
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SQNR vs input signal

120

) : : ! "~ Peak SQNR = 110 dB—— 5
» Top-level simulation (18 ENOB)

100
" fg =1kHz 8ol
w Ton = 0.155(OSR ~ 500)  _
a (3] 1 ] e
© fz/fs = 1/(4n) g
=4
N A0F -
O IFS = 2/,LA
20

Input [dBgg]
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Low-power circuit implementation

» Flexible and modular to be mapped into different

CMOS technologies
» Electronic integrator: Gm;-C,

» Feed-Forward path

» Latch comparator for 1-bit quantization

» D-type flip-flop for S/H

» Feedback current DAC

" Power consumption mainly

éf FS+
FD%backs_l?—/ ML gmod

Ifsens WO Ri=Ca——

Single-bit
(C'; —— quantizer

Hpp (;) Loop-filter

determined by current DAC FS,
allowing chemical reaction take place
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Simulation Results
0.18um CMOQOS technology

Performance simulation results Parameter Symbol _ Value  Unit
Supply voltage Vbp 1.8 \%
Power consumption mainly Potential range Voot = Vier  £0.7 v

d ined b DAC ES Input full scale Ips +2 BA
etermine y current Oversampling ratio OSR 500 —

P = 4.7TuW Sampling frequency fs 1 kHz
DAC H Loop-filer zero location fz/fs 1/m —

Potentiostatic ripple AViw 11.6  mVrms
Power at 2puApg Pp 5.1 uW

Rest of circuit blocks
P =370nW

13 T T T T T T

o
3

< o
[

T T

Vpot-Vref [V]

o o o o
2

Cyclic Voltammetry

o

o
>

Method for studying electrochemical reactions

Triangular waveform is applied to the
Reference-electrode, while the sensor
current is measured simultaneously.

VerilogA model

0.4 ; i ; i
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Vpot - Vref [V]

Ferrocyanide Cyclic Voltammetry
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Conclusions

» Compact architecture thanks to the electrode-electrolyte interface used as an
integrator stage in the AY structure

» Minimalist analog circuits fully integrable in purely digital CMOS technologies
» High resolution with kHz-range clock frequencies: SQNR = 110dB @ 1kHz

» Ultra low-power (370n'W) operation compared to sensor consumption
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Conclusions

» Compact architecture thanks to the electrode-electrolyte interface used as an
integrator stage in the AY structure

» Minimalist analog circuits fully integrable in purely digital CMOS technologies
» High resolution with kHz-range clock frequencies: SQNR = 110dB @ 1kHz

» Ultra low-power (370nW) operation compared to sensor consumption

Future work

Energy storage
Electrochemical sensor
<1mm? ASIC: Potentiostat AXM
RF antennas

Smart tags for Wireless contact lens
food quality control for health monitoring

J. Aymerich Gubern PRIME 2017



Low-power potentiostat 2" Order CT XA ADC for ECS 1/15

Power Consumption Comparison

[This work]
Technology 0.18 um 0.5pum 0.13 um 0.18 um 2.5 um 0.18 pm
ADC structure Current to frequency Delta-sigma Single-Slope Delta-sigma  Delta-sigma Delta-sigma
Sampling frequency - 100 kHz 1.25 kHz - 1 kHz 1 kHz
FS current 150 nA 16 pA 600 nA 1.65 pA 2 A 2 pA
Power consumption 3 W 241 yW 56 pW 920 pW 25 pyW 5 pW
@ supply voltage @12V @12V @2V @18V @5V @18V
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Root Locus

Small-Signal Stability Analysis ~ Unstable
%,40007
Linear model § 2009 Stable
> o
Rt (1 + arys) £
) . L(l + Tens)T2s —V(s) £.2000]
2nd °rﬁ'§{, ’l:?:?ﬂ-eliorward Quantizer Gain -4000! \
f Ipg 1 — 575 ] -6000. ‘ ‘ ;
—_— -500 0 500 1000
Ts S Real Axis (seconds ')
DAC
- A
Linear model os
Root Locus Unstable
)
Stability region as a function of K oz WO
Worst-case scenario when K is maximum

o

From stable situation

Real axis poles location / fs
o
N

Sweep input: 0 to FS to find maximum wl Stable
quantizer gain Kmax (worst-case) —~
| | | | | | | | .
Stability region as a function of f,/f (alJs) 2
: : Stability is ensured if:
Sweep fs/f; and check if Kmax is y ------------ :
within the stable region (Jz 13
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