J.Cisneros-Fernández<sup>1</sup>, M.Dei<sup>1</sup>, L.Terés<sup>1,2</sup> and F. Serra-Graells<sup>1,2</sup> jose.cisneros@imb-cnm.csic.es <sup>1</sup>Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

<sup>2</sup>Dept. of Microelectronics and Slectronic Systems (DEMISE) Universitat Autònoma de Barcelona

November 2017



SC-DSM design drawbacks 2

Class-AB Switched-Variable Mirror Amplifiers 3

Design methodology and trade-offs 4

Design Case 5

Conclusions 6



J. Cisneros Fernández

SC-DSM design drawbacks

Class-AB Switched-Variable Mirror Amplifiers

Design methodology and trade-offs

Design Case

Conclusions



J. Cisneros Fernández





### Cisneros Fernández



- IoE market : 10\$ trillion revenue, 100 billion conected devices by 2025
- IoE is where the physical world connects to the digital
- Includes sensors, converters, processors and transcievers
- Power efficiency is the keypoint
- Novel techniques and design methodologies are required
- ADC Converters in IoE requirements: Medium-to-low bandwidth signals Medium-to-high resolutions Low power consumption

SC-DSM design drawbacks 2

Class-AB Switched-Variable Mirror Amplifiers

Design methodology and trade-offs

Design Case

Conclusions



J. Cisneros Fernández





## SC-DSM design based on Class-AB OpAmp drawbacks

| Simulation time represents a <b>bottleneck</b>                                                               | 0.75        |
|--------------------------------------------------------------------------------------------------------------|-------------|
| Simulation time depends on the<br>environment abstraction level                                              | 0.50        |
| ▼ Class AB operation difficult to model                                                                      |             |
| <ul> <li>Classic methodologies:</li> <li>Top-Down with sub-cells segmentation</li> </ul>                     | 0.25        |
| Prone to errors during the specification<br>translation phase                                                | 0.00        |
| Can generate unrealizable specifications                                                                     |             |
|                                                                                                              | -0.25 + 0 0 |
| Fast novel design methodology allowing for power<br>optimization while accounting circuit related effects is | needed      |



SC-DSM design drawbacks

Class-AB Switched-Variable Mirror Amplifiers 3

Design methodology and trade-offs

Design Case

Conclusions



J. Cisneros Fernández

## **Class-AB Switched-Variable Mirror Amplifiers**

- Class-AB allows for Low static current consumption
- Fully differential architecture.
- CMFB control through the NMOS pair tail
- $\blacktriangle$  50% power consumption in switched-OpAmp operation
- All Class-AB current generated at the ouput branches
- Two types of non-linear voltage control variable gain current mirrors



 $V_{\mathrm{outn}}$ 

Α

 $V_{\rm xn}$ 



## **Class-AB Switched-Variable Mirror Amplifiers**

- Fully differential voltage-controlled non-linear current amplifiers
- Two competing Neg/Pos loops
- A, B and C labels represents the multiplicity
- Class-AB coefficient for all regions:

$$K_{AB} \doteq \frac{I_{\max}}{I_{tail}} = \begin{cases} 1 + \frac{AB}{C(A+B)} & \text{Type I} \\ 1 + \frac{AB}{C(A+B+C)} & \text{Type II} \end{cases}$$

 $\blacktriangle$  Good rule of thumb A = B + C

$$K_{\rm AB} \simeq 1 + \frac{B/C}{2}$$







### Cisneros Fernández

### DCIS 2017

### 10/30

SC-DSM design drawbacks

Class-AB Switched-Variable Mirror Amplifiers

Design methodology and trade-offs 4

Design Case

Conclusions



J. Cisneros Fernández

## **Reduced Switched-VMA Testbench**



- Same **boundary conditions** and operating points
- **Faster** than a complete DSM electrical simulation



### Cisneros Fernández

### DCIS 2017





Time (not to scale)

## Reduced electrical Testbench



## **Reduced Switched-VMA Testbench**



- Differential input is fixed for each charge transfer
- Settling transfer curve generated by sampling at the end of phase 4





## **Reduced Switched-VMA Testbench**



Differential input is fixed for each charge transfer



- The **settling transfer curve** accounts for the OpAmp **non-idealities**
- Simulation time is up to  ${\sim}15~min$ per settling curve







### J. Cisneros Fernández





## Methodology design flow

## DSM code

```
for k in range(0, nsamples):
    X1[k] = X1[k - 1] + a1 * (X[k - 1] - Y[k - 1])
    X2[k] = X2[k - 1] + a2 * (X1[k - 1] - Y[k - 1])
    Y[k] = 1 if X2[k] >= 0 else -1
```



- Extracted settling transfer curve feed into the high-level environment
- DSM electrical simulation at the end of each schematic/layout validation
- Simulation time reduction from ~7days to ~15 min





### Cisneros Fernández



## Methodology design flow

## DSM code

```
for k in range(0, nsamples):
    X1[k] = X1[k - 1] + a1 * (X[k - 1] - Y[k - 1])
    X2[k] = X2[k - 1] + a2 * (X1[k - 1] - Y[k - 1])
    Y[k] = 1 if X2[k] >= 0 else -1
```



Extracted settling transfer curve feed into the high-level environment

- DSM electrical simulation at the end of each schematic/layout validation
- Simulation time reduction from  $\sim$ 7davs to  $\sim$ 15 min





Lavout validation

Cisneros Fernández



SC-DSM design drawbacks

Class-AB Switched-Variable Mirror Amplifiers

Design methodology and trade-offs

Design Case 5

Conclusions



J. Cisneros Fernández

## Design Case: 16-bits 50-kHz Bandwidth SC-DSM ADC



Architecture validation:

3rd order feedforward single-loop and single-bit architecture OSR = 128

## Cisneros Fernández

**DCIS 2017** 



## Integrator coefficients [0.5,0.2,0.5] Feedforward coefficients [1,1,1]

## Design Case: K<sub>AB</sub> vs lb trade-off





J. Cisneros Fernández



## Design Case: K<sub>AB</sub> vs lb trade-off





J. Cisneros Fernández



## Design Case: K<sub>AB</sub> vs lb trade-off





J. Cisneros Fernández



## Design Case: K<sub>AB</sub> vs lb trade-off



### Schematic validation:

| Type I                 | SVMA1 | SVMA2  | SVMA3 |
|------------------------|-------|--------|-------|
| $I_{ m b}$ [ $\mu A$ ] | 100   | 50     | 30    |
| $K_{AB}$               | 6     | 6      | 6     |
| SNDR [dB]              |       | 100.43 |       |

| Type II                    | SVMA1 | SVMA2  | SVMA3 |
|----------------------------|-------|--------|-------|
| <i>I</i> <sub>b</sub> [μA] | 100   | 50     | 30    |
| K <sub>AB</sub>            | 4     | 4      | 4     |
| SNDR [dB]                  |       | 104.01 |       |



### J. Cisneros Fernández



## **Design Case: Results**



**Good matching results** between the proposed methodology and Full electrical simulations





**DCIS 2017** 



### **Optimized circuits show robustness against corners**

## Design Case: Extending the TB method to partial post-layout

## SVMA Type II layout





4.5dB SNDR estimation error

J. Cisneros Fernández

DCIS 2017

## SNDR high-level, TB methodology and Full electrical DSM

25/30



2 SC-DSM design drawbacks

3 Class-AB Switched-Variable Mirror Amplifiers

4 Design methodology and trade-offs

5 Design Case

6 Conclusions



J. Cisneros Fernández

## Conclusions

New circuit aware design methodology for delta-sigma modulators

Time consuming full electrical simulations left for verification purposes

 $\checkmark$  Iteration time reduced from ~7 days to ~15 min

Reliable design methodology including circuit related non-idealities

Can be extended to any other OpAmp circuit topology

Specific for discrete-time Delta-Sigma modulators







# Thank you!



J. Cisneros Fernández









### Cisneros Fernández J.

Classic methodology translation phase



J. Cisneros Fernández

