# How to Make Your Integrated Sensor Smarter

Francesc Serra-Graells<sup>1,2</sup>

paco.serra@imb-cnm.csic.es

<sup>1</sup>Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

<sup>2</sup>Dept. of Microelectronics and Electronic Systems Universitat Autònoma de Barcelona

Sep 2015





- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- 9 My Nice Smart Sensor





## **1** What is Missing?

- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





#### More than Moore

Technology
 diversification
 versus pure scaling

- Not only information processing applications but also **sensing**, communications, power control...
- Ubiquitous computing
- Interaction with the real multi-domain world! (physics, chemistry, biology, medicine...)



New market demands for custom smart sensors as core of heterogeneous systems





## What is Missing

**V** Why some sensors are not smart enough to reach **application** stage?





## What is Missing

CUUS

**•** Why some sensors are not smart enough to reach **application** stage?



Multi-disciplinary design work can be a hard task

## Filling the Gap

- Each smart sensor usually requires its own custom ROIC!
- General ROIC figures of merit (FOMs):
  - Small size for light packaging, aggressive system scaling and ubiquity
  - Low power for extended operative life, minimum overheating and local energy harvesting
  - Low cost for mass production, disposable products and multi-sensory applications

**Real smart sensor examples** developed by ICAS group at IMB-CNM(CSIC):



#### **ເມັນ**



- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 The Shrinking Packaging
- **9** My Nice Smart Sensor





## Too Tiny to Be Touched

- ROIC first challenge is to link the micro and macro worlds by supplying the needed sCalin II
  - Sensor signal power
    - Signal integrity
  - Sensor geometry
- Connectivity
- Sensor impedance
- Protection against parasitics
- Minimum area and power overheads wanted
- Not all integrated sensors operate in the same signal domain, e.g.:













- Applications in quartz crystal monolithic replacement, accurate mass sensor and more...
- Mechanical resonator at frequencies exceeding MHz
- CMOS post-processed using nanostencil lithography (nSL) at wafer level
- Very high Q factors
- Accurate modeling needed in terms of size, materials and package air pressure





- ROIC designed for the solely purpose of sensor characterization
- **Interface** challenge:
  - Current-mode read-out
  - Weak signal (nA)
  - Parasitic capacitance



$$I_{res} = \frac{dQ_{res}}{dt} \simeq C_{stat} \frac{dV_{osc}}{dt} + (V_{bias} - V_{ref}) \frac{dC_{mot}}{dt}$$





- ROIC designed for the solely purpose of sensor characterization
- Interface challenge:
  - Current-mode read-outWeak signal (nA)
  - Parasitic capacitánce
- Current conveyor (CII) based ROIC:
  - Low input impedance
  - Output current scaler
  - Built-in bias generator

$$\begin{bmatrix} I_Y \\ V_X \\ I_Z \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -MN & 0 \end{bmatrix} \begin{bmatrix} V_Y \\ I_X \\ V_Z \end{bmatrix}$$



#### ເພື່ອງເພ

Monolithic integration at IMB-CNM(CSIC) and experimental results:





 $10 \mu m$ 

#### ເພື່ອກູ

0.4 Pa

10

90

0

**NEMS** Resonator Characterization

Monolithic integration at IMB-CNM(CSIC) and experimental results:



P J. Arcamone et al., A Compact and Low-Power CMOS Circuit for Fully-Integrated NEMS Resonators, IEEE Transactions on Circuits and Systems-II, Vol.54:5, pp.377-381, May 2007

#### **T**NS CUUS

- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





### Process & Matching Nightmares

- Sensor technologies tend to suffer from large process and mismatching deviations
- Countermeasures at ROIC level?
  - Blind sensor for process and interference cancellation in differential read-out, but its effectiveness can be limited by mismatching itself
  - Large area, minimum distance and symmetrical layout design
  - Calibration mechanism (automatic or with external control)
  - Digital **post-processing** may be too late to recover dynamic range!



## ເພື່ອງເພື່ອ

## A Microdroplet Dispensing System

- Applications in photonics, molecular electronics, biosensors...
- Fluidic NEMS operated as a bioplume

ເດີຍອາດ

- Accurate **positioning** for microdoplet high uniformity
- Multi-channel digital ROIC for integrated **piezo-resistive** stress sensors:
  - Low power to prevent drying
  - Low voltage for single cell battery supply
- Blind sensor against interferences



#### **Integrated Piezo-Resistors**

- Differential read-out of weak stress signal ±0.1% / ±0.0004% = 9bit
- Process corners ±20%
- Large **disturbing** signals in the order of ±1%
- Technology mismatching deviations ±2%
- Residual disturbing signals ±0.02% = ±50LSB!
- Gain tuning mechanism
  to be included inside ROIC
  ±2% / 0.01% = (8+1)bit







## Multichannel ROIC Architecture

- Overall programmable sensitivity (I<sub>com</sub>)
- Differential gain balancing through sensor bias (ΔI<sub>com</sub>)
- Differential OTA pre-amplification
- Integrate & fire current-mode A/D conversion
- Digital-only read-out and program-in interface
- Channel-based modular ROIC design



#### کىيار ھ**لىپا**

## Low-Voltage and Low-Power CMOS Circuits

- Gain calibration through built-in SC DAC:
  - Recalibrated at start-up
  - Compensation of piezo-resistor mismatch and OTA unbalance

- Differential V to single ended I conversion:
  - Biased in weak inversion for best G<sub>m</sub>/I<sub>D</sub> and lowest technology sensitivity
  - Low equivalent input noise and high CMRR



## ເພື່ອກູ

## Low-Voltage and Low-Power CMOS Circuits

- **Spike-counting** ADC:
  - Class-AB window comparator

 Compact CTIA with correlated double sampling (CDS) for low-frequency noise reduction





## Quad ROIC CMOS Integration

0.35µm 2P4M CMOS technology

2.4mm x 1.3mm (3.1mm<sup>2</sup>)



Direct wire-bonded to integrated piezo-resistors substrate

#### F. Serra-Graells EUROCON 2015



## **Experimental Results**

$$\frac{S_{11-0}}{\Delta R_{sens}/R_{sens}} = \frac{G_m T_{int}}{C_{int} V_{th}} I_{com} R_{sens} \simeq 6 \text{kLSB} / \%$$

**130µW/ch** at **+1.25V** (+3.3V technology)





+0.5

-0.5

-1

1

 $\rm S_{11-0} \ [LSB]$ 



ĴCAS

CUU®



600

 R. Durà et al., A 0.3mW/Ch 1.25V Piezo-Resistance Digital ROIC for Liquid Dispensing MEMS, IEEE Transactions on Circuits and Systems-I, 56:5(957-65), May 2009

10

- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- 4 Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





## **Biasing Specials**

- Some sensors require ROIC to incorporate control loops for their proper DC biasing
- Multiple ports may be needed by ROIC to compensate for unavoidable parasitics
- When possible, lock-in operation is advised to strongly reduce equivalent noise bandwidth
- Indirect measurement through time-domain processing is a promising alternative





## Integrated Electrochemical Sensors



- Applications in biosensors, quality control...
- Compatible with CMOS monolithic integration
- Selectivity by functionalization of their microelectrodes surface

- Reduced speed (~0.1s) and life time
- Expensive package
- Potentiostatic operation and amperometric reading





## Mixed Electrochemical ROIC Architecture

- Low-pass first-order single-bit CT ΔΣ A/D modulator with sensor in the loop:
  - Minimalistic analog circuits
  - Low power ROIC overhead respect to sensor itself
  - Accurate sensor dynamic modeling needed







#### عبی ( **سال**

## Low-Power All-MOS Circuits

- Two **analog blocks** only
- Latched comparator for 1bit quantization + current reference for 1bit feedback DAC







#### ເພື່ອງເບເຊ



## Monolithic CMOS Integration

- IMB-CNM(CSIC) inexpensive 2.5µm 1M CMOS technology (CNM25)
- In-house sensor Au postprocessing at wafer level
- 2.3mm x 2.8mm (6.4mm<sup>2</sup>)
- **Low area** overhead of  $\Delta\Sigma$  ADC
- Digital only interface for low-pass filtering and programming of potentiostatic voltage and current full-scale

▲ Overall **25µW** at **+5V** 



## **ເພີ່**

## **Experimental Results**

 Electrical tests show good enough dynamic range to not limit measurements





ເພື່ອງເບເຊ

0.8

0.6

0.4

 $[Fe(CN)_6]^4$ 

 $0.1 \mathrm{mM}$ 

0.25

0.5

300

ΔΣ ADC

CH Instruments 1030B Multipotentiostat

1

y = 0.4931x - 0.0043

 $R^2 = 0.9998$ 

0.8

0.6

ROIC

 $d_{sens}$  [FS]

## **Experimental Results**

CUU

በና

- Electrical tests show good enough dynamic range to not limit measurements
- **Electrochemical** tests return comparable performance to lab desktop equipment



Smart Electrochemical Sensors, IEEE Transactions on Circuits and Systems-I, 61:3(671-679), Mar 2014

1.2

- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- 5 Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





## Flexibility as a Must

ROIC controllability/observability to increase overall sensor yield?



- Single ROIC can fit several sensor designs
- Built-in test mechanism to screen smart sensors before post-processing or packaging
- Compensate for sensor aging
- Independent optimization of dynamic range for each stage

- If available, **non-volatile** memory (Flash, OTP...) to store configuration
- Specially useful when sensor or application specifications are incomplete!
- Extra design work for making each stage configurable

## ເພື່ອງເພ

## IR Spectroscopic Gas Recognition System





Applications in toxic gas warning, environmental monitoring...

- Thermal **µbolometer** LWIR sensors
- Multipath optical cell to amplify gas IR **absorption** effect
  - Blind reference and lock-in demodulation for high accuracy read-out
  - Sensor deviations and mixed IR technologies need high flexibility for each channel
  - Low power ROIC to avoid thermal drifts of IR sensors

#### LUZ

## **ROIC Channel Module**

Sub-Hz high-pass pre-amplification

- Dedicated **blind channel** for cancellation of common disturbing signals
- 5-parameter independent programmability per channel!
- ADC with **digital lock-in** demodulation



ເພື່ອກູ

### Low-Power Channel Circuits

 Fully integrated sub-Hz variable
 corner & gain
 pre-amplifier Highly linear differential transconductor with soft limiter





Integrate & fire PDM with **3-level** quantizer



#### ເທີ

32-Channel ROIC

- 0.35µm 2P4M
  CMOS technology
  - 350µm-pitch
  - 11mm x 1.6mm (17.6mm<sup>2</sup>)
  - Direct wire-bonded to IR µbolometer array







50 40 30

20 10

itude [dB]

**Experimental Results** 

▲ **120µA/ch** at +3.3V

CIUS

## Full programmability

|                   |                 |                      | цã                 |             | / /                                     |    |                |    |     |  |
|-------------------|-----------------|----------------------|--------------------|-------------|-----------------------------------------|----|----------------|----|-----|--|
| Parameter         | Value           | Units                | ] Ž <sup>-10</sup> |             | /                                       |    |                |    |     |  |
| Isens             | 1 to 10         | μA                   | -20                | $\langle /$ |                                         |    |                |    |     |  |
| $f_c$             | $0.75 \pm 0.10$ | Hz                   | 1 20               | Υ           |                                         |    |                |    |     |  |
|                   | $3.6 \pm 0.4$   |                      | -30                |             |                                         |    |                |    |     |  |
|                   | 49±8            |                      | -40                |             |                                         |    |                |    |     |  |
|                   | $389 \pm 76$    |                      | 50                 |             |                                         |    |                |    |     |  |
| G                 | 26±0.1          | dB                   | 1 40               |             |                                         |    |                |    |     |  |
|                   | $34{\pm}0.1$    |                      |                    |             |                                         |    |                |    |     |  |
|                   | $40 \pm 0.1$    |                      | 30                 | -/          | /                                       |    | /              |    |     |  |
|                   | $45\pm0.1$      |                      | <u> </u>           | K.          | /                                       |    |                |    |     |  |
| $G_m$             | 18              | $\mu$ S              |                    |             |                                         |    |                |    |     |  |
|                   | 25              |                      | I ap 10            | <b>_</b>    | /////////////////////////////////////// |    |                |    |     |  |
|                   | 36              |                      | l ii 0             |             | /                                       | /  |                |    |     |  |
|                   | 45              |                      |                    |             |                                         |    |                |    |     |  |
| $1/C_{int}V_{th}$ | 1.7             | Hz/pA                |                    | 7           | /                                       |    |                |    |     |  |
|                   | 0.8             |                      | -20                |             | /                                       |    |                |    |     |  |
| Vsensneg@10Hz     | 250             | $nV_{rms}/\sqrt{Hz}$ | -30                |             |                                         |    |                |    |     |  |
| THD Vamp<300mVpp  | <0.1            | %                    | 1                  | [           |                                         |    |                |    |     |  |
| Crosstalk         | < 0.5           | LSB                  | -40                | 0.1         | 1                                       | 10 | 100            | 1K | 101 |  |
|                   | 1               | i                    | -                  |             |                                         | F  | Frequency [Hz] |    |     |  |

 S. Sutula et al., A 400uW Hz-Range Lock-In A/D Frontend Channel for Infrared Spectroscopic Gas Recognition, IEEE Transactions on Circuits and Systems-I, 58:7(1561-8), Jul 2011 100K

- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





## Massive Parallel Processing

- Connectivity issues for large sensory arrays
- Multi-channel ROIC architecture?
  - Parallel A/D conversion reduces equivalent noise bandwidth
  - Early A/D conversion avoids inter-symbol crosstalk
  - Dedicated ADC per sensor increases area and power (temperature)



Offset

Offset

Real-time FPN correction

digital maps

Gain

# High-Speed Uncooled IR Digital Imager

- Applications in strategic equipment, production quality control...
- Photoconductive **PbSe MWIR** sensors post-processed by VPD on top of CMOS
  - High frame rate achievable at room temperature
  - High fixed pattern noise (**FPN**)
  - High speed **multiplexing** spec at focal plane array (FPA) level
- Low power digital pixel sensor (**DPS**) to not increase sensor temperature

CUU



MWIR imager



Uncorrected output

digital frame

## **ROIC Pixel Circuits**

- Sensor **capacitance** compensation
- FPN offset (dark current) and gain (sensitivity) digital compensation
- ▲ In-pixel **A/D** conversion
- Local bias generator and asynchronous operation to minimize inter-pixel crosstalk
- Daisy-chain digital read-out and simultaneous program-in
- **Sub-μW/pix** static power

CUU

LUZ

**135µm-pitch** in 0.35µm 2P4M
 CMOS technology





#### **ROIC Pixel Circuits**

- Sensor **capacitance** compensation
- FPN offset (dark current) and gain (sensitivity) digital compensation
- In-pixel A/D conversion
- Local bias generator and asynchronous operation to minimize inter-pixel crosstalk
- Daisy-chain digital read-out and simultaneous program-in
- Sub-µW/pix static power
- **135µm-pitch** in 0.35µm 2P4M
  CMOS technology



#### **کس**از (شامی)

## Sensor Integration at Wafer Level

- Au deposition and patterning for contacts + active layer by PbSe VPD
- Sapphire window on top + wire-bonding to chip-carrier



Access to sensor common bias terminal through ROIC pads



F. Serra-Graells EUROCON 2015

## IR Test Results

CUU®

**T**NS



#### High speed digital frame mux for both read-out and program-in



I. Margarit et al., A 2-kfps Sub-uW/Pix Uncooled-PbSe Digital Imager with 10-bit DR Adjustment and FPN Correction for High-Speed and Low-Cost MWIR Applications, IEEE Journal of Solid-State Circuits, 2015, accepted

#### F. Serra-Graells EUROCON 2015



- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





## Power-Aware Design

- Smart sensor **ubiquity** means limited power source!
- Analog circuit techniques for **low-power**?

 Low-voltage design (supply or technology specs)

- Charge-pump supply multipliers
- Bulk-driven transistors
- Current-domain processing
- Inverter-based amplifiers
- **—** ...

Local energy source solution (or combination) for each scenario?



...

Low-current design

Class-AB amplifiers

Short duty-cycles

(life-time or thermal specs)

Asynchronous operation

Noise-shaping architectures

## Remote Powered Impedimetric Sensor

- Applications in chemical industry control and biosensors...
- 13.56MHz ISM near field inductive coupling for remote power supply

Complex I/Q impedance measurements for solution conductivity and permittivity monitoring



#### ເພື່ອງເປັນ

## **CMOS** Integration

- 0.35µm 2P4M high-voltage CMOS technology
  - 3.5mm x 3.5mm (12.25mm<sup>2</sup>)
  - 3M power coupling coil (L~8µH, Q~1) and supply capacitor (C~2nF) at periphery
- Number of turns optimized for maximum supply voltage and out-band self-resonant frequency
- Pads for prototype testing purposes only









## Lithography-Less Post-Processing

- Poly-Silicon material + native oxidation (3nm) to improve microelectrode reliability
- **4-microelectrode** by CHF<sub>3</sub>-based reactive ion etching (**RIE**)







## Lithography-Less Post-Processing

- Poly-Silicon material + native oxidation (3nm) to improve microelectrode reliability
- 4-microelectrode by CHF<sub>3</sub>-based reactive ion etching (RIE)
- Interdigitated 2-microelectrode by RIE + 'piranha' (H<sub>2</sub>SO<sub>4</sub>) solution







## **Experimental Results**

- ▲ Remote power **5mW** at **3mm** (up to>10cm with external resonator)
- ▲ Complex impedance measurement at **13kHz** (10kHz to 100kHz)



 F. Segura-Quijano et al., Towards Fully Integrated Wireless Impedimetric Sensors, MDPI Sensors, 10:4(4071-82), Apr 2010

## ເພື່ອກັບ

- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- **9** My Nice Smart Sensor





## When Package Matters

Packaging costs can be dominant in hybrid smart sensors!



#### 

## 2D Modular Direct X-Ray Imager





#### ເກີພະນັ້

# Packaging for Seamless 2D Image







Inter-pixel crosstalk?

 R. Figueras et al., A 70-um Pitch 8-uW Self-Biased Charge-Integration Active Pixel for Digital Mammography, IEEE Transactions on Biomedical Circuits and Systems, 5:5(481-489), Oct 2011

CUU®

**T**NS

## **CMOS ROIC Module**

- 0.18µm 1P6M CMOS technology
- 94 x 94 pixel (5mm x 5mm) module

#### 52μm-pitch

▲ **6µW/pix** at +1.8V

Gen-3 55µm pitch 30% area



## ເພື່ອງເພີ

Gen-2 70µm pitch 49% area Wafer-Level Sensor Integration

4"-wafer 55µm-pitch Si X-ray detectors from IMB-CNM(CSIC) to be tested...





- **1** What is Missing?
- 2 Too Tiny to Be Touched
- **3** Process & Matching Nightmares
- **4** Biasing Specials
- **5** Flexibility as a Must
- 6 Massive Parallel Processing
- 7 Power-Aware Design
- 8 When Package Matters
- 9 My Nice Smart Sensor





### My Nice Smart Sensor

- Custom + standard chip set
- Single ROIC design to cover a full family of sensors (e.g. chemical)

- Local energy harvesting + storage for ROIC + controller memory
- Wireless communications and remote power



#### **کس**از (شامی)