Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits

<u>S. Sutula¹</u>, M. Dei¹, L. Terés^{1,2} and F. Serra-Graells^{1,2} stepan.sutula@imb-cnm.csic.es

¹Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

²Dept. of Microelectronics and Electronic Systems (DEMISE) Universitat Autònoma de Barcelona (UAB)

Lisbon, May 2015

- 2 Class-AB Architecture
- 3 Process-Independent Circuits
- 4 Practical Design
- 5 Experimental Results

- 2 Class-AB Architecture
- 3 Process-Independent Circuits

4 Practical Design

5 Experimental Results

Low-Voltage Approach

- Bulk-driven OpAmps
- Internal supply multipliers
- Inverter-based OpAmps
- Switched OpAmps

- Nominal-voltage downscaling
- Moderate power savings

鎣

Low-Current Approach

- Telescopic diff. pairs with LCMFB
- Dynamic biasing by RC bias tees
- Hybrid-Class-A/AB
- Adaptive biasing
- Higher power savings
- Parameter-variation sensitivity

2 Class-AB Architecture

3 Process-Independent Circuits

4 Practical Design

5 Experimental Results

Single-Stage Class-AB OpAmp

- Two complementary diff. pairs
- Dynamic current mirrors
- Separate Class-AB control
- Partial positive feedback
- CMFB control through the NMOS-pair tail
- Gain improvement by the **output cascode** transistors
- No need for the Miller compensation capacitors
- High-peak Class-AB currents only in the output transistors

Single-Stage Class-AB OpAmp

1 Introduction

- 2 Class-AB Architecture
- 3 Process-Independent Circuits
- 4 Practical Design
- 5 Experimental Results

Type I

$$\begin{split} I_{\rm inp} = & \mathsf{B}\!\left(2\sqrt{\frac{I_{\rm onn}}{D}} \!-\! \sqrt{\frac{I_{\rm onp}}{D}} \!+\! \sqrt{\frac{I_{\rm inp}}{A}}\right)\!\left(\sqrt{\frac{I_{\rm onp}}{D}} \!-\! \sqrt{\frac{I_{\rm inp}}{A}}\right) \\ & + & \mathsf{C}\!\left(\sqrt{\frac{2I_{\rm tail}}{D}} \!-\! \sqrt{\frac{I_{\rm onn}}{D}} \!-\! \sqrt{\frac{I_{\rm onn}}{D}} \!+\! \sqrt{\frac{I_{\rm inp}}{A}} \!+\! \sqrt{\frac{I_{\rm inn}}{A}}\right) \\ & \left(\sqrt{\frac{I_{\rm onp}}{D}} \!-\! \sqrt{\frac{I_{\rm onn}}{D}} \!-\! \sqrt{\frac{I_{\rm inp}}{A}} \!+\! \sqrt{\frac{I_{\rm inn}}{A}}\right) \end{split}$$

- Cross-coupled pair for the Class-AB operation
- Crossing transistor as a Class-AB limiter

- Independence from the technology parameters
- Need for an extra bias reference

Type I with Class-AB Smoother

 Low-level common-mode current injection

- Instability prevention under a high Class-AB modulation
- Need for extra current sources

Type II

$$\begin{split} I_{\rm inp} = & \left[2 \left({\rm B} \sqrt{\frac{I_{\rm onn}}{D}} + {\rm C} \sqrt{\frac{I_{\rm onp}}{D}} \right) \right. \\ & \left. - \left({\rm B} + {\rm C} \right) \left(\sqrt{\frac{I_{\rm onp}}{D}} - \sqrt{\frac{I_{\rm inp}}{A}} \right) \right] \left(\sqrt{\frac{I_{\rm onp}}{D}} - \sqrt{\frac{I_{\rm inp}}{A}} \right) \end{split}$$

$$\mathbf{D} \doteq \frac{\mathbf{A}(\mathbf{B}+\mathbf{C})}{\mathbf{A}+\mathbf{B}+\mathbf{C}} \qquad \qquad I_{\max} \simeq \frac{1+\frac{\mathbf{A}}{\mathbf{C}}}{1+\frac{\mathbf{A}}{\mathbf{B}+\mathbf{C}}} I_{\mathrm{tail}} > I_{\mathrm{tail}}$$

- Independence from the technology parameters
- Auto-biased Class-AB limiter
- Self-latch prevention
- Simple sizing procedure

1 Introduction

- 2 Class-AB Architecture
- 3 Process-Independent Circuits

4 Practical Design

5 Experimental Results

S. Sutula et al.

Type-II OpAmp Using a 0.18-µm CMOS Technology

- Circuit design based on the inversion-coefficient
- Reduced set of transistor matching groups
- Minimum-channel-length devices can be used
- Bias for cascode transistors optimized for maximum output full scale
- 1.8-V nominal voltage supply of the CMOS technology

്ട്രേണ്ണിയ്ന്ന

- DC transfer curve
- Analytical versus numerical behavior
- Class-AB achieves about ×4 bias current

Surgen and Surgen and

Simulation Results

 Frequency response

Simulation Results

Step response for several load conditions

Stability robustness

Integration

Standard
0.18-µm 1P6M
CMOS
technology

0.07-mm² area

 Additional CMFB averaging capacitors for SC applications

Superior Contractions

	34	0 μm		
220 µm				

Integration

Standard
0.18-µm 1P6M
CMOS
technology

0.07-mm² area

 Additional CMFB averaging capacitors for SC applications

1 Introduction

- 2 Class-AB Architecture
- 3 Process-Independent Circuits
- 4 Practical Design
- 5 Experimental Results

Step Response

CSIC Com () أنتاج

DEMISE(UAB) UNB

Full-Scale Evaluation

▲ 3.3-V_{pp} differential full scale at 1.8-V voltage supply

Figure-of-Merit Comparison

Parameter	[1]	[2]	[3]	[4]	[5]	This work	Units
Technology	0.5	0.5	0.25	0.13	0.18	0.18	μm
Supply	2	2	1.2	1.2	0.8	1.8	V
DC gain	43	45	69	70	51	72	dB
$C_{\rm load}$	80	25	4	5.5	8	200	pF
GBW	0.725	11	165	35	0.057	86.5	MHz
Phase margin	89.5	N/A	65	45	60	50	0
Slew rate, SR	89	20	329	19.5	0.14	74.1	V/µs
Static power, P	0.12	0.04	5.8	0.11	0.0012	11.9	mW
Area	0.024	0.012	N/A	0.012	0.057	0.07	mm ²
FOM	59.33	12.50	0.28	0.98	0.93	1.25	V pF μs μW

$$FOM = \frac{SR \cdot C_{load}}{P} \qquad \left[\frac{V}{\mu s} \frac{pF}{\mu W}\right]$$

1 Introduction

- 2 Class-AB Architecture
- 3 Process-Independent Circuits
- 4 Practical Design
- 5 Experimental Results

Conclusions

- New family of Class-AB OpAmps
- Single-stage topology
- ▶ No need for an internal frequency compensation
- Class-AB current peaks in the output transistors only
- Low sensitivity to the technology parameter variations
- **Simple** analytical design flow
- Successfully used in a 16-bit 100-kS/s $\Delta\Sigma$ ADC

Thank you!

References

- A. J. Lopez-Martin, S. Baswa, J. Ramirez-Angulo, and R. G. Carvajal, "Low-Voltage Super Class AB CMOS OTA Cells With Very High Slew Rate and Power Efficiency," *IEEE Journal of Solid-State Circuits*, vol. 40, pp. 1068–1077, 2005.
- [2] J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan, and A. Lopez-Martin, "A Free But Efficient Low-Voltage Class-AB Two-Stage Operational Amplifier," *IEEE Transactions on Circuits and Systems II: Expressed Briefs*, vol. 53, pp. 568–571, 2006.
- [3] M. Yavary and O. Shoaei, "Very Low-Voltage, Low-Power and Fast-Settling OTA for Switched-Capacitor Applications," in *Proceedings of the International Conference on Microelectronics*, 2002, pp. 10–13.
- [4] M. Figueiredo, R. Santos-Tavares, E. Santin, J. Ferreira, G. Evans, and J. Goes, "A Two-Stage Fully Differential Inverter-Based Self-Biased CMOS Amplifier With High Efficiency," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 58, pp. 1591–1603, 2011.
- [5] M. R. Valero, S. Celma, N. Medrano, B. Calvo, and C. Azcona, "An Ultra Low-Power Low-Voltage Class AB CMOS Fully Differential OpAmp," in *Proceedings of the IEEE International Symposium on Circuits and Systems*, 2012, pp. 1967–1970.

Normalized Current Transfer Curve for Different B/C Ratios

Normalized Current Transfer Curve Under Corners for B/C=3

