A Low-Power MOS-Only Potentiostatic $\Delta\Sigma$ ADC Architecture for Electrochemical Sensors

J. Pallarès¹, S. Sutula¹, J. Gonzalo-Ruiz², F. X. Muñoz-Pascual², L. Terés^{1,3} and <u>F. Serra-Graells^{1,3}</u> paco.serra@imb-cnm.csic.es

¹Institut de Microelectrònica de Barcelona, IMB-CNM(CSIC)

²MATGAS A.I.E.

³Dept. of Microelectronics and Electronic Systems Universitat Autònoma de Barcelona

Nov 2014

1 Introduction

- **2** Electrochemical ΔΣ Architecture
- **3** Low-Power MOS-Only Circuits
- 4 Low-Cost Monolithic Smart Sensor
- 5 Experimental Results
- 6 Conclusions

Motivation and Proposal

Integrated chemical sensors

- Interaction with microorganisms
- Selectivity by functionalization
- Speed limitation
- Reduced life time
- Packaging costs
- Electrochemical family
 - CMOS compatible
 - Potentiostatic biasing
 - Amperometric read-out
- Classic circuit interface require multiple OpAmps + resistors + ADC
- Low-power MOS-only circuit proposal based on mixed electronic and chemical domain potentiostatic ΔΣ modulator

ເມນູ ເອັ

Sensor Modeling

- Reuse of sensor dynamics for circuit design needs accurate device modeling
- <u>R</u>eference, <u>W</u>orking and <u>C</u>ounter planar microelectrodes
- Non-linear electrical impedance model under **potentiostatic** operation:
 - R_s = electrolyte solution resistance
 - R_{ctx} = charge-transfer resistance
 - C_{dlx} = double-layer capacitance
- Solution resistance smaller than electrode-solution counterparts (10²kΩ)
- Similar impedance results with internal (micro) or external (macro) counter microelectrodes
- Equivalent linear **dynamic model**

1 Introduction

2 Electrochemical ΔΣ Architecture

- **3** Low-Power MOS-Only Circuits
- 4 Low-Cost Monolithic Smart Sensor
- **5** Experimental Results
- 6 Conclusions

ΔΣ Modulator Architecture

- Behavior similar to low-pass first-order single-bit CT ΔΣ A/D modulator
- Error current is converted into voltage and shaped in frequency by the electrochemical sensor itself
- Quantization, S/H and DAC feedback in electronic domain
- Amperometric read-out through ΔΣ modulation of output bit stream q_{mod} by chemical input I_{in}
- Overall negative feedback ensures
 potentiostatic operation by keeping
 V_{rw} biased close to V_{ref} potential
- High oversampling ratios (OSR>100) can be easily obtained with kHz-range clock frequencies f_s

Class-A full scale:
$$I_{FS} = rac{V_{ref}}{R_{ctw}}$$

Electrochemical time constant:

$$\tau_{ch} = R_{ctw} C_{dlw} \sim 10^{-1} s$$

A Low-Power MOS-Only Potentiostatic $\Delta\Sigma$ ADC Architecture for Electrochemical Sensors

$\Delta\Sigma$ Modulator Optimization

- Typical tonal components of first-order
 ΔΣ modulation are attenuated through thermal noise dithering at DAC
- Fractal staircase DC transfer function due to DT losses of CT electrochemical integrator is improved by increasing OSR

E.g. $\Delta\Sigma M$ behavioral simulation for R_{ctw} =500k Ω , τ_{ch} =0.16s, V_{ref} =1V and I_{FS} =2 μ A

- **1** Introduction
- **2** Electrochemical $\Delta\Sigma$ Architecture
- **3** Low-Power MOS-Only Circuits
- 4 Low-Cost Monolithic Smart Sensor
- **5** Experimental Results
- 6 Conclusions

A Low-Power MOS-Only Potentiostatic $\Delta\Sigma$ ADC Architecture for Electrochemical Sensors

Low-Power MOS-Only Circuits

- Two **analog blocks** only
- **Latched comparator** for 1-bit quantization

- Technology mismatching does not cause distortion but DC offset at V_{rw}
- If V_{ref} is chosen higher than redox potential, electrochemical signals can tolerate comparator offsets as large as ±10mV

Low-Power MOS-Only Circuits

- Two **analog blocks** only
- **Latched comparator** for 1-bit quantization
- Compact reference generator for current DAC

- Circuit core based on previous work from these authors [6]
- Programmable full scale for different integrated sensor designs
- Power on/off instead of current steering operation to reset all MOSFETs and reduce flicker noise
- RTZ signaling in order to avoid typical waveform asymmetries issues of CT ΔΣMs

ເພື່ອງເພື່ອ

- **1** Introduction
- **2** Electrochemical $\Delta\Sigma$ Architecture
- **3** Low-Power MOS-Only Circuits
- 4 Low-Cost Monolithic Smart Sensor
- **5** Experimental Results
- 6 Conclusions

A Low-Power MOS-Only Potentiostatic ΔΣ ADC Architecture for Electrochemical Sensors

Monolithic CMOS Integration

- Inexpensive 2.5µm 1M CMOS technology (CNM25)
- In-house sensor post-processing at wafer level consisting on sputtering of Ti(15nm)+Au(150nm) thin films and lithographic patterning by lift-off
- Sensor layout design: D_{in}=390µm, D_{out}=830µm and S=30µm
- Sensor electrical model: R_{ctw} =500k Ω and τ_{ch} =0.16s
- **ΔΣM** design parameters: V_{ref} =1V, I_{FS} =2µA and f_s =1024Hz (OSR=512)
- Low area overhead of proposed ΔΣM
- Digital only interface for low-pass filtering + V_{ref} and I_{FS} programming

2.3mm x 2.8mm (6.4mm²)

ອກີລາວໃຜ**ອີກກວ**

Jofre Pallarès et al. DCIS 2014

- **1** Introduction
- **2** Electrochemical $\Delta\Sigma$ Architecture
- **3** Low-Power MOS-Only Circuits
- **4** Low-Cost Monolithic Smart Sensor
- 5 Experimental Results
- 6 Conclusions

Electrical Tests

- Sensor emulation with external network (R_{ctw}=510kΩ, C_{dlw}=330nF) and SRS DS360 generator in equivalent Thévenin configuration
- Although dithering noise at DAC should be increased, PSD returns good robustness against tones

Electrical Tests

- Sensor emulation with external network (R_{ctw}=510kΩ, C_{dlw}=330nF) and SRS DS360 generator in equivalent Thévenin configuration
- Although dithering noise at DAC should be increased, PSD returns good robustness against tones
- Quasi-static response shows high enough SNDR to not limit electrochemical sensor resolution
- Statistical analysis on 9 samples returns DR deviations below ±0.5bit
- Experimental comparison between power-on/off and current steering DAC operation points to 3dB flicker noise reduction

ເມນູ ເອັ

A Low-Power MOS-Only Potentiostatic ΔΣ ADC Architecture for Electrochemical Sensors Intro Arch Circuits Monolithic Results Conclusions 16/19

Electrochemical Tests

Standard experiment based on Ferrocyanide ion oxidation into Ferricyanide

 $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-} \rightarrow \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-} + 1\mathrm{e}^{-}$

- **10µL reservoir** with Ferrocyanide dissolved in Phosphate buffer solution (PBS) at pH=7
- Ion concentration swept from 0.1mM to 1mM and potentiostatic V_{ref}=0.7V
- Electrochemical **time constant** as expected

Electrochemical Tests

Standard experiment based on Ferrocyanide ion oxidation into Ferricyanide

 $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-} \rightarrow \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-} + 1\mathrm{e}^{-}$

- **10µL reservoir** with Ferrocyanide dissolved in Phosphate buffer solution (PBS) at pH=7
- Ion concentration swept from 0.1mM to 1mM and potentiostatic V_{ref}=0.7V
- Electrochemical **time constant** as expected
- Remarkable linearity below 1mM
- Comparable to lab desktop equipment
- Good performance for sensing applications
- Very **low-power** operation compared to sensor consumption itself (can improve with low-voltage CMOS tech)

Parameter	Value	Units
Full scale range	2 to 32	μA
Potential range	0 to 5	V
Sampling frequency	1	kHz
Oversampling ratio	≥ 256	
Electrical dynamic range	>10	ENOB
Residual standard deviation $(n=6)$	<15	%
Coefficient of determination (R^2)	0.9985	
Supply voltage	5	V
Power consumption at $2\mu A_{FS}$	25	$\mu \mathrm{W}$
Die size	2.3×2.8	mm^2

ເພື່ອກູ

- **1** Introduction
- **2** Electrochemical $\Delta\Sigma$ Architecture
- **3** Low-Power MOS-Only Circuits
- **4** Low-Cost Monolithic Smart Sensor
- **5** Experimental Results
- 6 Conclusions

Conclusions

- ΔΣ ADC architecture for potentiostatic biasing and amperometric reading of integrated electrochemical sensors
- Mixed electro-chemical CT ΔΣ modulator exploits dynamic behavior of sensors for analog minimalist implementation
- Accurate sensor modeling is needed
- **Low-power MOS-only** circuits for electronic part of $\Delta\Sigma$ ADC
- ▲ **25µW** complete smart sensor in **low-cost** 1M CMOS technology
- Electrical dynamic range exceeding **10bit** and electrochemical linearity close to R²=0.999 and RSD<15%</p>
- Comparable in **performance** to commercial desktop equipment

Thanks for your attention!

