A 10kfps 32x32 Integrated Test Platform for Electrical Characterization of Imagers

<u>J.M. Margarit¹</u>, L. Terés¹, E. Cabruja¹ and F. Serra-Graells^{1,2}

josepmaria.margarit@imb-cnm.csic.es

¹Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

²Dept. of Microelectronics and Electronic Systems Universitat Autònoma de Barcelona

June 2014

1 Introduction

- 2 ITP Architecture
- 3 ITP Pixel Cell
- 4 Low-Cost CMOS Integration
- 5 Experimental Results
- 6 Conclusions

Introduction

- How to characterize imager response to image patterns and motion sequences?
- Standard approach: Optical stimulation (LED arrays, TFT displays, mechanical choppers...)
 - Bulky + optical chain uncertainty
 - Requires detector: Not suitable for electrical direct tests
- 2. Our proposal: Electrical Imager test platform (ITP) custom IC + Imager under test (IUT) attached pixel-by-pixel to ITP by flip-chip packaging
 - ▲ **Compact** setup

CUU

- ITP digital current sources (I_{xy}) allow direct stimulation of each individual IUT pixel
- Hybrid imager prototypes can be tested before sensor integration at wafer level (e.g. IR and X-ray imagers)

1 Introduction

- 2 ITP Architecture
- 3 ITP Pixel Cell
- 4 Low-Cost CMOS Integration
- **5** Experimental Results
- 6 Conclusions

ITP Architecture

- 2D array of **digitally controlled** current sources (I_{xv})
- I_{xy} individual value obtained as a combination of row (I_{ry}) and column (I_{cx}) currents
- Programmed at each frame through ry and cy digital codes and peripheral current DACs
- Compact pixel pitch
- Square root scalability with image size
- Reduced programming data size enables high frame rates

ITP Architecture

- 2D array of **digitally controlled** current sources (I_{xv})
- I_{xy} individual value obtained as a combination of row (I_{ry}) and column (I_{cx}) currents
- Programmed at each frame through ry and cy digital codes and peripheral current DACs
- Compact pixel pitch
- Square root scalability with image size
- Reduced programming data size enables high frame rates
- Synthesizable images are reduced to practical moving test patterns (e.g. rectangles, lines, gradients)

ອກວໍເ (**ທ ກວ**

- **1** Introduction
- **2** ITP Architecture
- 3 ITP Pixel Cell
- 4 Low-Cost CMOS Integration
- **5** Experimental Results
- 6 Conclusions

ITP Pixel Cell

- 2-transistor only pixel
- Matching at row (MR_{xy}-MR_y) and column (MC_{xy}-MC_x) levels
- Strong inversion operation for all devices and forward saturation for MC_{xy}, MR_y and MC_x:
- Independence from technology improves fixed pattern noise (FPN) and integration yield
- Non-linear behavior

$$I_{xy} = \frac{1}{4} \left(\sqrt{I_{cx}} - \sqrt{I_{ry}} + \sqrt{I_{ry} - I_{cx} + 2\sqrt{I_{ry}I_{cx}}} \right)^2$$

ITP Pixel Cell

2-transistor only pixel

- Matching at row $(MR_{xy}-MR_y)$ and column $(MC_{xy}-MC_x)$ levels
- Strong inversion operation for all devices and forward saturation for MC_{xy}, MR_y and MC_x:
- Independence from technology improves fixed pattern noise (FPN) and integration yield
- Non-linear behavior

CUU

- Good agreement between
 analytical-simulated results.
 Linearization through digital preemphasis
- Low sensitivity against CMOS process corners

Row control only:

ITP Pixel Cell

2-transistor only pixel

- Matching at row $(MR_{xy}-MR_y)$ and column $(MC_{xy}-MC_x)$ levels
- Strong inversion operation for all devices and forward saturation for MC_{xy}, MR_y and MC_x:
- Independence from technology improves fixed pattern noise (FPN) and integration yield
- Non-linear behavior
- Good agreement between
 analytical-simulated results.
 Linearization through digital preemphasis
- Low sensitivity against CMOS process corners

Column control only:

- **1** Introduction
- **2** ITP Architecture
- **3** ITP Pixel Cell
- 4 Low-Cost CMOS Integration
- **5** Experimental Results
- 6 Conclusions

CMOS Integration

- 32x32-pix 50µm-pitch ITP
- Low-cost 2.5µm 1M CMOS tech. suitable for full-wafer flip-chip
- Global dark current added to pixel cell (M3)
- 4-bit (16-level) row and column current DAC programmability

$$I_{xy} = I_{bkgd} + \frac{1}{4} \frac{I_{fs}}{16} \left(\sqrt{c_x} - \sqrt{r_y} + \sqrt{r_y - c_x + 2\sqrt{r_y c_x}} \right)^2$$

CMOS Integration

- **32x32-pix 50µm-pitch** ITP
- Low-cost 2.5µm 1M CMOS tech. suitable for full-wafer flip-chip
- Global dark current added to pixel cell (M3)
- 4-bit (16-level) row and column current DAC programmability

Phantom IUT chip (3x3mm²) with routing map for the direct measurement of selected ITP pixel cells

- **1** Introduction
- **2** ITP Architecture
- **3** ITP Pixel Cell
- **4** Low-Cost CMOS Integration
- 5 Experimental Results
- 6 Conclusions

Experimental Results

- Individual pixel current programmability can cover practical levels of sensor background and full-scale
- 5%_{rms} FPN from 50 pixel readings of 3 ITP dies

Experimental Results

- Individual pixel current programmability can cover practical levels of sensor background and full-scale
- 5%_{rms} FPN from 50 pixel readings of 3 ITP dies
- 10kfps rate achievable with smooth transitions

Parameter	Value	Units
Array size	32×32	pix
Pixel pitch	50	$\mu{ m m}$
Digital row/col control	4	bit
Full-scale current range	0 to 4	μA
Background current range	0 to 10	μA
Fixed pattern noise	< 5	$\mathscr{M}_{\mathrm{rms}}$
Max. prog. rate	20	Mbps
Max. image rate	10	kfps
Supply voltage	5	V
Die area	7.2×7.2	mm^2

ີ **ເມນ**ີ ເອີຍ

- **1** Introduction
- **2** ITP Architecture
- **3** ITP Pixel Cell
- **4** Low-Cost CMOS Integration
- **5** Experimental Results
- 6 Conclusions

Conclusions

- Novel integrated test platform (ITP) proposal for imagers
- Direct electrical test of each individual imager pixel
- Combined row/column digital programmability with low technology sensitivity
- Synthesis of practical image test patterns and high-speed motion sequences
- 32x32-pix 4x4-bit ITP example in low-cost 2.5µm 1M CMOS technology
- Experimental results return µA-range 5%_{rms}-FPN 10kfps performance suitable for imager testing

Thanks for your attention!!!

Josep Maria Margarit IEEE ISCAS 2014

I_{pix} Programmability

ITP Layout

ເພື່ອງເພ

ITP Configuration Chronogram

ITP Digital Control

ເພື່ອງເບເຊ

ITP D/A Converter

ເພື່ອງເບເຊ

ITP-IUT Bump Bonding (In, SnPb)

