A 0.18µm CMOS Low-Power Charge-Integration DPS for X-Ray Imaging

Roger Figueras¹, Justo Sabadell², Josep Maria Margarit¹, Elena Martín¹, Lluís Terés¹ and <u>Francisco Serra-Graells¹</u>

paco.serra@imb-cnm.csic.es

¹Integrated Circuits and Systems (ICAS) Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC)

²X-Ray Imatek S.L.

November 2009

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

7 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Hybrid X-ray digital imagers
- Low-energy (<20keV) medical applications: mammography</p>

- DPS circuits for visible spectrum:
 - \times e⁻/h⁺ collection
 - Pulsed X-ray input current (typ. 15ke⁻/hit@10µs)
 - ✗ Dark current + gain FPN
 - X Built-in test
- Few DPS for X-ray based on photon-counting:
 - X Saturation due to pile-up
 - Losses from charge sharing with neighbors

イロト イヨト イヨト

- Hybrid X-ray digital imagers
- Low-energy (<20keV) medical applications: mammography</p>

- Novel X-ray DPS proposal based on charge-integration to solve all plus:
 - Self-biasingLossless A/D conversion

for a low-power and compact DPS!

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Lossless A/D Conversion

Predictive scheme:

$$\begin{aligned} q_{adc} &= \lfloor n_{adcideal} \rfloor \\ n_{adcideal} &= \frac{T_{frame}}{T_{pulseideal}} = \frac{T_{frame}}{C_{int} V_{th}} \bar{I}_{adc} \end{aligned}$$

Under real low-power operation:

e.g. 10bit and T_{frame} =10ms require T_{res} <5ns!

ເດກສູພາເປັ

IMB-CNM(CSIC) and X-Ray Imatek S.L.

Predictive scheme:

Under real low-power operation:

- \checkmark T_{res} independent
- ✓ $min(T_{res})$ for charge redistribution

$$\checkmark \max(f_{pulse}) = \frac{1}{2T_{re.}}$$

ເພື່ອງເປັນຂ

R. Figueras et al.

IMB-CNM(CSIC) and X-Ray Imatek S.L.

cato

Lossless A/D Conversion

CMOS proposal:

- Capacitive TransImpedance Amplifier (CTIA) = M1-4 + C_{int}
- Non-overlapped reset by M6-7
- $b_{h/\bar{e}} \text{ for controlling } collection polarity }$
- Inherent Correlated Double Sampling (CDS)

< ∃ →

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Current copiers based *I_{dark}* auto-calibration
- Coarse + fine for charge injection compensation
- Composite switches for long retention time (up to 1s)
- ✓ Dual operation for $b_{h/\bar{e}}$
- ✓ ADC PDM parts reused
- CTIA offset independent

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Gain Programmability

FPN compensation via individual V_{th} control:

- SC DAC based
- ✓ Serial program-in during read-out (no speed losses), for C_{samp}≡C_{mem}:

$$V_{prog} = V_{DD} \sum_{i=0}^{B-1} \frac{q_{dac}(i)}{2^{B-i}} \ge 0$$

Polarity + storage:

$$V_{th} = rac{C_{mem}}{C_{int}} V_{DD} \sum_{i=0}^{B-1} rac{q_{dac}(i)}{2^{B-i}}$$

- ✓ ADC PDM reused
- Built-in test through charge injection...

R. Figueras et a

IMB-CNM(CSIC) and X-Ray Imatek S.L.

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Local Bias Generation

- I_{bias} and V_{ref} DPS generator
- PTAT core M1-M4 in weak inversion saturation:

$$V_{bias} = U_t \ln P$$

M8 and M9 in strong inversion saturation and conduction:

$$I_{bias} = QI_{S9} \quad I_{S9} = 2n\beta_9 U_t^2$$

$$Q = \left[\frac{\ln P}{2(M+1)}\left(\sqrt{\frac{M}{N}} + \sqrt{\frac{M}{N} + M + 1}\right)\right]$$

M12 in strong inversion saturation:

$$V_{ref} = 2n\sqrt{\frac{QX}{Y}} U_t + V_{TO}$$

- ✓ I_S-based I_{bias} for low dependence on technology
- ✓ V_{ref} thermal compensation

ເພື່ອງເພ

IMB-CNM(CSIC) and X-Ray Imatek S.L.

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

7 Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

CMOS Integration

DPS cell layout:

- ► I_{bias}=250nA
- ▶ V_{ref}=670mV
- C_{int}, C_{reset/CDS}, C_{mem} and C_{samp}=100fF
- ▶ B=(10+1)bit

(日) (四) (三) (三)

• 40mV< V_{th} <400mV

CMOS Integration

DPS test oriented circuit:

- ► I_{bias}=250nA
- ▶ V_{ref}=670mV
- C_{int}, C_{reset/CDS}, C_{mem} and C_{samp}=100fF
- ▶ B=(10+1)bit
- $40mV < V_{th} < 400mV$
- Single transistor
 I_{sens} emulators
- 0.18µm 1P 6M triple-well CMOS technology

イロト イヨト イヨト

Experimental Results

PDM transfer function:

... for $V_{th} = 0.4 V$ ('00010010110').

DPS performance:

Parameter	Value	Units
Supply voltage	1.8	V
Dark current range	0.01 to 20	nA
Transfer gain	<1/50	LSB/ke^-
Equivalent noise charge	1.5 to 18	ke_ms
Integration time	10 to 1000	ms
Output dynamic range	10	bit
Crosstalk	< 0.5	LSB
Program-in/read-out speed	50	Mbps
Static power consumption	5	μW
Bias mismatching $(\pm \sigma)$	<10	%
Silicon area	100×100	μm^2

イロト イヨト イヨト

ເມັນ

э

Experimental Results

... for $V_{th} = 0.4 V$ ('00010010110').

DPS performance:

Parameter	Value	Units
Supply voltage	1.8	V
Dark current range	0.01 to 20	nA
Transfer gain	<1/50	LSB/ke^-
Equivalent noise charge	1.5 to 18	ke_ms
Integration time	10 to 1000	ms
Output dynamic range	10	bit
Crosstalk	< 0.5	LSB
Program-in/read-out speed	50	Mbps
Static power consumption	5	μW
Bias mismatching $(\pm \sigma)$	<10	%
Silicon area	$100\! imes\!100$	μ m ²

イロト イボト イヨト イヨト

ເມີຍອາງເພຍ

э

- 2 Lossless A/D Conversion
- 3 Dark Current Cancellation
- 4 Gain Programmability and Built-in Test
- 5 Local Bias Generation
- 6 CMOS Integration and Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Conclusions

- Novel charge-integration DPS for X-ray digital imaging
- In-pixel lossless A/D conversion
- **Dark current** automatic compensation
- FPN cancellation through digital gain programmability
- Built-in test capabilities
- Local analog bias and references for low crosstalk
- Very low-power CMOS circuits
- Preliminary test results in 0.18µm 1P 6M triple-well CMOS technology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Future Work

Scaling, scaling and scaling!

 $20 \mu m$

イロト イボト イヨト イヨト

э