A Sub-µW Fully Programmable CMOS DPS for Uncooled Infrared Fast Imaging

J. M. Margarit, L. Terés and F. Serra-Graells

System Integration Department Institut de Microelectrònica de Barcelona Centro Nacional de Microelectrónica - CSIC Spain

May 2008

イロト 不同 トイヨト イヨト

- 2 Input Capacitance and Offset Compensation
- 3 A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

э.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

- 2 Input Capacitance and Offset Compensation
- 3 A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

.

イロト 人間 ト イヨト イヨト

Scenario

- PbSe promising technology for uncooled IR fast imaging
- CMOS post-processing & hybrid solutions
- DPS specs:
 - X Large sensor capacitance
 - X High dark current
 - FPN compensation
 - ✓ Digital only I/O
 - ✓ Very low-power

Image: A matrix

< ∃ >

DPS Architecture Proposal

- Input capacitance compensation
- Low-noise processing:
 - + Built-in A/D conversion
 - + Quiet digital signaling
- **FPN** digital cancellation:
 - + Offset (dark current)
 - + Gain (ADC LSB)
- Inter-pixel low-crosstalk:
 - + Digital read-out/program-in
 - + Local analog references

< ロ > < 同 > < 回 > < 回 > < 回 > <

2 Input Capacitance and Offset Compensation

- 3 A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results
- 7 Conclusions

Ξ.

ヘロト 人間 とくほ とくほ とう

CMOS Realization

Low input impedance:

$$\begin{split} r_{in} &\simeq \frac{g m_{d1,2} + g m_{d3,4}}{g m_{g5} g m_{g1,2}} \\ &= \frac{n_N n_P U_t^2}{I_{sens}} \left(\lambda_N + \lambda_P \right) \\ r_{in} < \mathsf{k}\Omega \text{ allowing } C_{par} \sim \mathsf{pF} \end{split}$$

Dark current **DAC**:

$$V_{GB6} = V_{DD} \left[\frac{C_{dark}}{C_{dark} + C_{dac}} \left(\frac{1}{2} + \frac{C_{dac}}{C_{dark}} \sum_{i=1}^{N} \frac{\mathbf{p}_{N-i}}{2^{i}} \right) - 1 \right]$$

... stored in analog memory $2C_{dac} + C_{darka} + C_{darkb}$ for next two frames.

2 Input Capacitance and Offset Compensation

3 A/D Conversion

- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

э.

ヘロト 人間ト 人造ト 人造トー

ADC Architecture

- Alternatives:
 - X Direct (flash)
 - X Algorithmic (success.approx.)
 - ✓ Predictive $(\Sigma \Delta)$
- Feedback = relaxed specs for analog parts
- Pulse modulator + digital low-pass filter
 - + PWM, time to first spike
 - + **PDM**, spike counting:
 - ✓ No external clocks
 - $\checkmark~$ Switching power \propto signal amplitude

э

< ∃ > < ∃ >

CMOS Blocks

Compact CTIA with CDS

∢ ≣ ≯

æ

CMOS Blocks

- Compact CTIA with CDS
- Class-AB comparator

$$f_{spike} = \frac{1}{C_{int} V_{th}} I_{eff}$$

... with overflow detector

< ∃⇒

э

CMOS Blocks

- Compact CTIA with CDS
- Class-AB comparator

$$f_{spike} = \frac{1}{C_{int} V_{th}} I_{eff}$$

イロト イボト イヨト イヨト

- ... with overflow detector
- Digital counter

$$\texttt{wout} = \lfloor n_{out} \rfloor$$

$$n_{out} = \frac{f_{spike}}{f_{frame}} = \frac{T_{frame}}{C_{int} V_{th}} I_{eff}$$

 \dots reused as serial I/O

э

2 Input Capacitance and Offset Compensation

3 A/D Conversion

- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

э

ヘロト 人間ト 人造ト 人造トー

Built-in Bias Generator

- Reduced inter-pixel crosstalk
- FPA low-connectivity (number of metal layers)
- PTAT core in weak inversion saturation:

$$V_{ref} = U_t \ln(P)$$

MOSFET load in strong inversion conduction:

$$I_{bias} \simeq \beta \left(\frac{W}{L}\right)_5 \left(V_{DD} - V_{TO}\right) V_{ref}$$

- Large M5 overdrive \Rightarrow process **corners** reduced to β
- Technology mismatching due to P (M1-M4)

イロト イヨト イヨト

- 2 Input Capacitance and Offset Compensation
- 3 A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

Ξ.

ヘロト 人間 とくほ とくほ とう

Digital Programming

- Individual pixel gain tuning through PDM V_{th}
- Program-in + read-out at no speed costs
- Full FPN compensation
- Optional spatial AGC

- Alternate frame programming
- DAC can be shared with I_{dark}

< ∃ →

- 2 Input Capacitance and Offset Compensation
- 3 A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

Ξ.

ヘロト 人間 とくほ とくほ とう

Electrical Test Vehicle

- 0.35µm 2P 4M standard CMOS technology
- PbSe IR sensor emulators

Design parameters:

 C_{int} =500fF N=10 P=12 I_{bias} =60nA C_{dac} =300fF

 $500 \mu m$

• Overall performance:

Description	Value	Units
Dark current range	0.5-2	μA
Max. input capacitance	15	pF
Signal range	1-1000	nA
Integration time	1	ms
Crosstalk	< 0.5	LSB
Programming/read-out speed	10	Mbps
Supply voltage	3.3	V
Static power consumption	<1	μW
Biasing deviations $(\pm \sigma)$	± 15	%

イロト イボト イヨト イヨト

э

DPS Realizations

50µm

Hybrid bump bonding $(130\mu m \times 130\mu m)$

イロト イボト イヨト イヨト

CMOS post-processing $(200\mu m \times 200\mu m)$

э

A/D Transfer Functions

Full programmable in **offset** (I_{dark}) and **gain** (V_{th}) :

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 … のへで

イロト 不同 トイヨト イヨト

Statistical FPN

From 480 DPS cells programmed at I_{dark}='100000000' and V_{th}='100000000':

... showing the motivation for the offset and gain tuning!

2

イロト イ押ト イヨト イヨト

Analog Memory Retention

Range of I_{dark} and V_{th} memory **leakage** rate inside the DPS:

... retention times are large enough for alternate frame programming!

- 2 Input Capacitance and Offset Compensation
- 3 A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results

Ξ.

ヘロト 人間 とくほ とくほ とう

Conclusions

- Novel DPS for uncooled IR fast imaging.
- Sensor capacitance and dark current compensation.
- Compact spike-counting A/D converter with CDS.
- Digitally controlled full FPN compensation.
- Local analog bias generator.
- Very low-power CMOS circuits.
- Monolithic and hybrid DPS in 0.35µm 2P 4M.
- Electrical experimental results.

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

> $32 \times 32 \ 135 \mu$ m-pitch **FPAs** ready for PbSe and optical test:

by modular flip-chip

< ロ > < 同 > < 三 >

by CMOS post-processing

Working on next generation: further down scaling with AER...

