A Sub-1µW Fully Programmable CMOS DPS for Uncooled Infrared Fast Imaging

J. M. Margarit, F. Serra-Graells and L. Terés

System Integration Department Institut de Microelectrònica de Barcelona Centre Nacional de Microelectrònica - CSIC Spain

November 2008

- **1** Introduction
- **2** Input Capacitance and Offset Compensation
- **3** A/D Conversion
- 4 DPS Self-Biasing
- **5** Individual Gain Tuning
- 6 Experimental Results
- 7 Conclusions

- **2** Input Capacitance and Offset Compensation
- **3** A/D Conversion
- 4 DPS Self-Biasing
- 5 Individual Gain Tuning
- 6 Experimental Results
- 7 Conclusions

digital

tuning map

Scenario

- Uncooled IR fast imaging: PbSe technology
- CMOS post-processing & hybrid solutions

DPS specs:

Large sensor capacitance
 High dark current
 FPN compensation
 Digital only I/O
 Very low-power

DPS Architecture Proposal

- Input capacitance compensation
- Low-noise processing:
 - Built-in A/D conversionQuiet digital signaling
- FPN digital cancellation:
 - Offset (dark current)
 - Gain (ADC LSB)
- Inter-pixel low-crosstalk:
 - Digital read-out/program-in
 - Local analog references

2 Input Capacitance and Offset Compensation

- 3 A/D Conversion
- 4 DPS Self-Biasing
- **5** Individual Gain Tuning
- **6** Experimental Results
- 7 Conclusions

6/26

CMOS Realization

Low input impedance:

Dark current DAC (analog memory):

$$V_{GB6} = V_{DD} \left[\frac{C_{dark}}{C_{dark} + C_{DAC}} \left(\frac{1}{2} + \frac{C_{DAC}}{C_{dark}} \sum_{i=1}^{N} \frac{p_{N-i}}{2^{i}} \right) - 1 \right]$$

M6a

 $(\downarrow$

bias

M1

M3

M8

M9

2 Input Capacitance and Offset Compensation

3 A/D Conversion

4 DPS Self-Biasing

- 5 Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

ADC Architecture

- Alternatives:
 - Direct (flash)
 Algorithmic (success. approx.)
 Predictive (ΣΔ)

Feedback = relaxed analog specs

- Pulse modulator + digital LPF:
 - PWM, time to first spike
 - PDM, spike counting:
 - No external clocks
 Switching power -> signal amplitude

9/26

CMOS Blocks

Compact CTIA with CDS

CMOS Blocks

CMOS Blocks

- Compact CTIA with CDS
- Dynamically-biased comparator

 $f_{spike} = \frac{1}{C_{int}V_{th}}I_{eff}$

...with overflow detector

Digital counter wout = $\lfloor n_{out} \rfloor$ $n_{out} = \frac{f_{spike}}{f_{frame}} = \frac{T_{frame}}{C_{int}V_{th}}I_{eff}$

...reused as serial I/O

2 Input Capacitance and Offset Compensation

3 A/D Conversion

4 DPS Self-Biasing

5 Individual Gain Tuning

6 Experimental Results

7 Conclusions

Built-in Bias Generator

- Reduced inter-pixel crosstalk
- FPA low-connectivity (num. metal layers)
- PTAT core in weak inversion saturation:

 $\overline{V_{ref}} = U_t \ln(P)$

MOSFET load in strong inversion conduction:

$$I_{bias} \simeq \beta \left(\frac{W}{L}\right)_5 \left(V_{DD} - V_{TO}\right) V_{ref}$$

- Large M5 overdrive: process corners reduced to
- Technology mismatching due to P (M1-M4)

- **2** Input Capacitance and Offset Compensation
- **3** A/D Conversion
- 4 DPS Self-Biasing
- **5** Individual Gain Tuning
- **6** Experimental Results
- 7 Conclusions

nput ADC Biasing Gain Results Conclusion

Digital Programming

- Individual pixel gain tuning (PDM V_{th})
- Program-in + read-out at no speed costs

Full FPN compensation

Alternate frame programming

Optional spatial AGC

- **2** Input Capacitance and Offset Compensation
- **3** A/D Conversion
- 4 DPS Self-Biasing
- **5** Individual Gain Tuning
- 6 Experimental Results

7 Conclusions

Electrical Test Vehicle

- 0.35µm 2P 4M standard CMOS technology
- PbSe IR sensor emulators

Design parameters:

 C_{int} =500fF N=10 P=12 I_{bias} =60nA C_{dac} =300fF

 $500 \mu {
m m}$

Overall performance:

Description	Value	Units
Dark current range	0.5-2	μ A
Max. input capacitance	15	рF
Signal range	1-1000	nA
Integration time	1	ms
Crosstalk	<0.5	LSB
Programming/read-out speed	10	Mbps
Supply voltage	3.3	V
Static power consumption	< 1	μW
Biasing deviations $(\pm \sigma)$	± 15	%

DPS Releases

50µm

CMOS **post-processing** (200μm×200μm)

50µm

Hybrid bump bonding (130μm×130μm)

A/D Transfer Functions

Full programmable offset (I_{dark}) & gain (V_{th})

Statistical FPN

480 DPS cells , I_{dark} ='1000000000' and V_{th} ='100000000'

...showing motivation for offset & gain tuning!

CSIC

Analog Memory Retention

DPS I_{dark} , V_{th} memory leakage rate:

...large enough for alternate frame programming!

- **2** Input Capacitance and Offset Compensation
- **3** A/D Conversion
- 4 DPS Self-Biasing
- **5** Individual Gain Tuning
- 6 Experimental Results
- 7 Conclusions

Conclusions

- Novel DPS for uncooled IR fast imaging.
- Sensor capacitance and dark current compensation.
- Compact spike-counting A/D converter with CDS.
- Digitally controlled full FPN compensation.
- Local analog bias generator.
- Very low-power CMOS circuits.
- Monolithic and hybrid DPS in 0.35µm 2P 4M.
- Electrical experimental results.

Current Status

> 32 x 32 135 μ m-pitch FPAs ready for PbSe and optical test:

By modular flip-chip

By CMOS post-processing

Working on next generation: further down scaling with AER...

Thank you for your attention!!!

J. M. Margarit, F. Serra-Graells, L. Terés Centro Nacional de Microelectrónica

