・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A Novel DPS Integrator for Fast CMOS Imagers

J. M. Margarit, J. Sabadell, L. Terés and F. Serra-Graells

System Integration Department Institut de Microelectrònica de Barcelona Centro Nacional de Microelectrónica - CSIC Spain

May 2008

3

イロト イポト イヨト イヨト

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results

э.

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results
- 6 Conclusions

In-pixel ADC

- Architecture?
 - X Direct (flash)
 - X Algorithmic (success. approx.)
 - ✓ Predictive ($\Sigma\Delta$)
- Feedback = relaxed analog specs
- Pulse modulator + digital filter
 PWM = time-to-first spike
 - $PDM \equiv spike \ counting$
 - ✓ No external clocks
 - $\checkmark\,$ Switching power $\propto\,$ signal
 - X Signal loss due to reset times

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results
- 6 Conclusions

э.

PDM for Fast Imaging

- Classic topology:
- CTIA to cancel input parasitics
- Correlated double sampling (CDS) for noise cancellation

 $q_{adc} =$

Ideally:

$$\lfloor n_{adcideal} \rfloor \qquad n_{adcideal} = \frac{T_{frame}}{T_{pulseideal}} = \frac{T_{frame}}{C_{int} V_{th}} I_{sens}$$

э

프 🖌 🔺 프 🕨

Real Scenario

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results
- 6 Conclusions

Reset-Insensitive Topology

- Charge controlled reset of the PDM integrator
- Continuous-time integration (like APS!)
- Built-in CDS mechanism
- Switch charge injection similar to classic topology

э

(4) (E) (A) (E) (A)

Real Scenario

- During reset, charge from Isens and Creset/CDS is combined and integrated in Cint.
- Almost **ideal**, even for $T_{pulsereal} \sim T_{res}$.
- Minimum T_{res} required for redistribution...
- ... but T_{res} value not relevant (technology independence).

True low-power and low-voltage compatible!

★ Ξ ► < Ξ ►</p>

・ロト ・聞 ト ・ ヨト ・ ヨトー

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results

6 Conclusions

э.

CMOS Proposal

- 3-stage compact PDM circuit
- Single transistor
 CTIA stage M1
- Local reference M2
- Built-in threshold comparator M3 (all in weak inversion):

$$V_{th} = nU_t \ln \frac{(W/L)_1}{(W/L)_3}$$

- Technology **mismatching** $C_{int} \leftrightarrow C_{reset/CDS}$, M1 \leftrightarrow M2 and M1 \leftrightarrow M3 are equivalent to ΔV_{th}
- ΔV_{th} reduction through **DPS** area increase

イロト イヨト イヨト

э

1 Introduction

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results

6 Conclusions

Quasi-Static (QS) Stimulus

Non Quasi-Static (NQS) Stimulus

1 Introduction

- 2 Reset Issues in Spike Counting
- 3 Novel PDM Scheme
- 4 Compact CMOS Realization
- 5 Simulation Results

6 Conclusions

Conclusions

- Novel pulse density modulator (PDM) for high-speed DPS.
- **Reset-insensitive** analog integrator proposal.
- Low non-linearity for low-power and low-voltage operation.
- Compact CMOS circuit realization.
- Comparative study in 0.18µm 1-poly 6-metal technology.
- **Robust** simulation results for both QS and NQS signals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで