# A Self-Biased and FPN-Compensated Digital APS for Hybrid CMOS Imagers

#### F. Serra-Graells, J. M. Margarit and L. Terés

System Integration Department Institut de Microelectrònica de Barcelona Centro Nacional de Microelectrónica - CSIC Spain

May 2007



イロト 不得 とくほと くほとう



- 2 Pixel Architecture Proposal
- 3 Low-Power CMOS Building Blocks
- 4 Experimental Results





イロト イヨト イヨト



- 2 Pixel Architecture Proposal
- 3 Low-Power CMOS Building Blocks
- 4 Experimental Results
- 5 Conclusions

CUU

э

ヘロト 人間 とくほとくほとう

### Scenario

# Active pixel requirements

- sensor FPA CMOS read-out array digital digital gain image map map hybrid pad (bumping, ADC I/O postprocess...) digital pixel sensor (DPS)
- ► Hybrid imager ⇒ high input cap
- ► Room temp. IR ⇒ large dark current
- ► FPA signal integrity ⇒ digital only I/O
- ► FPN compensation ⇒ individual pixel gain programmability
- ► Large FPA ⇒ low-power & compact pixel circuits



#### 2 Pixel Architecture Proposal

#### 3 Low-Power CMOS Building Blocks

#### 4 Experimental Results



CUU

F. Serra-Graells, J. M. Margarit and L. Terés Institut de Microelectrònica de Barcelona

э

イロト イボト イヨト イヨト

# Digital pixel sensor (DPS) proposal



- Automatic input dark current & capacitance compensation
- Asynchronous ADC based on spike counting
- Individual gain control:
  - ✓ FPN compensation
  - ✓ Spatial AGC
  - ✓ Updated each frame
  - ✓ No speed reduction
- Built-in analog references

ヘロト ヘボト ヘビト



- 2 Pixel Architecture Proposal
- 3 Low-Power CMOS Building Blocks
- 4 Experimental Results
- 5 Conclusions



э

イロト イボト イヨト イヨト

## Input offset and capacitance compensation



**Low impedance** input:

$$r_{in} = \frac{1}{gm_{g5}} \left( \frac{1}{n + \frac{gm_{g1,2}}{gm_{d1,2} + gm_{d3,4}}} \right) \ll 1 \mathrm{k}\Omega$$

so, 
$$\mathit{C}_{par}$$
 can be  ${>}10\mathrm{pF...}$ 

- Regulated cascode dark current copier:
  - ✓ Mismatch insensitive
  - $\checkmark$  Large dark-to-signal ratio  $\sim \frac{1\mu \mathsf{A}}{1\mathsf{n}\mathsf{A}}$

э

## Integrating ADC



Fast reset times can be obtained. Ideally:

$$f_{spike} = \frac{1}{C_{int} V_{th}} I_{eff}$$

- 3-switch reset CTIA stage:
- ✓ More parasitic insensible
- Constant input voltage
  - CDS implementation
- Low-power
  Class-AB
- Dynamic bias comparator
- C<sub>int</sub> linearity not needed

< ロ > < 同 > < 回 > < 回 >

# Digital integrator and I/O



- Circuit reuse:
  - **Ripple counter**  $\checkmark$
  - Shift register  $\checkmark$
- Modular design
- **Overflow** detector
- In case of no overflow:

$$\texttt{wout} = rac{f_{spike}}{f_{frame}} = rac{T_{frame}}{C_{int}\,V_{th}}I_{eff}$$

イロト イヨト イヨト

э

## Self-biasing



(M21-M22 in weak inv. + M25 in strong inv.)

 $V_{ref} = U_t \ln(P)$ 

 $I_{bias} \simeq \beta \left(\frac{W}{L}\right)_{or} \left(V_{DD} - V_{TO}\right) V_{ref}$ 

**Local** I/V reference:

- ✓ Low crosstalk
- ✓ Compact circuit
- Low process sensitivity
- Bias mismatching between DPS cells:

$$\sigma\left(\frac{\Delta V_{ref}}{V_{ref}}\right) = \frac{1}{\sqrt{(WL)_{21,22}}} \frac{A_{VTO}}{nV_{ref}}$$



# FPN compensation



- Offset cancellation already addressed by the input copier
- Built-in DAC for gain correction:

$$V_{th} = V_{DD} \sum_{i=1}^{N} \frac{\mathbf{b}_{N-i}}{2^i}$$

- $\checkmark$  No speed reduction
- $\checkmark$  Individual for each DPS
- ✓ Changeable each frame

イロト イヨト イヨト

Suitable for spatial AGC

#### 1 Introduction

- 2 Pixel Architecture Proposal
- 3 Low-Power CMOS Building Blocks
- 4 Experimental Results
- 5 Conclusions

CUU

э

イロト 不得 とくほと くほとう

# CMOS integration (first version)



Room temperature
 PbSe IR sensor target

#### Design parameters:

| $C_{int}$       | 500 fF |
|-----------------|--------|
| Ν               | 10 bit |
| P               | 12     |
| Ibias           | 50 nA  |
| $C_{mem, samp}$ | 100 fF |

0.35µm 2-polySi 4-metal CMOS technology

## $100 \mu m \times 100 \mu m$

- A - E - M

# CMOS integration (first version)





#### $100 \mu m \times 100 \mu m$

Room temperature
 PbSe IR sensor target

#### Design parameters:

| $C_{int}$       | 500 fF |
|-----------------|--------|
| Ν               | 10 bit |
| P               | 12     |
| Ibias           | 50 nA  |
| $C_{mem, samp}$ | 100 fF |

0.35µm 2-polySi 4-metal CMOS technology

イロト イポト イヨト イヨト



ro DPS Blocks **Results** Conclu

# Results (first version)



- Test vehicle:
  - ✓ 3×10 pixel FPA
  - ✓ NMOS sensor emulator

#### Performance:

Dark current range 0.1-5 µA Dark current retention time 2-10 s Max. input capacitance 15 pF Signal range 1-1000 nA Integration time 1 ms Crosstalk <0.5 LSB Programming/read-out speed 10 Mbps Supply voltage 3.3 V Static power consumption  $<1 \mu W$ Biasing deviations  $(\pm \sigma)$  $\pm 15$  % Total Silicon area  $100 \times 100 \ \mu m^2$  Last minute results (second version)

**Shared DAC** for programming  $V_{th}$  &  $I_{dark}$  at alternating frames:



イロト 人間 ト イヨト イヨト

cat

3

#### 1 Introduction

- 2 Pixel Architecture Proposal
- 3 Low-Power CMOS Building Blocks
- 4 Experimental Results





э

イロト 不得下 イヨト イヨト

## Conclusions

- Novel low-power and digital-only I/O DPS cell
- Hybrid imager compatibility
- Pixel built-in FPN compensation and biasing generation
- Circuit implementation for all building blocks
- ▶ 0.35µm 2-polySi 4-metal CMOS demonstrator



3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト